Good to the last drop: fully utilizing a *pp* collision's correlated information with the QCD power spectrum

Keith Pedersen (kpeders1@hawk.iit.edu) with Zack Sullivan (Zack.Sullivan@iit.edu)

P-25 theory seminar, Los Alamos National Laboratory, 22 Oct 2018

These slides are now available at www.HEPguy.com

Outline

1 The search for new physics at the LHC

- All bumps are created equal (but some are more equal)
- Basics of LHC proton physics

2 Revisiting the QCD power spectrum

- high-luminosity \implies high-pileup
- Using all available information
- The power spectrum H_{ℓ} (e.g., Fox-Wolfram moments)

3 Modification 1: Shape functions \Longrightarrow collinear safety

- H_{ℓ} for basic QCD events
- The angular resolution of a finite sample

4 Modification 2: The Power jets model

- The expected H_{ℓ} distributions
- Fitting a jet-like model to the H_{ℓ} observation
- Pileup: a natural extension
- H_{ℓ} for high energy **nuclear** physics

What is matter, and how does it work?

Scattering jargon

$$\begin{split} \sigma &= \text{scattering cross section} \\ L &= \text{collider luminosity} \\ L_{\text{int}} &= \int L \, \mathrm{d}t \qquad \text{(sample size)} \end{split}$$

$$\mathsf{Ex}(\mathsf{collisions}) = \sigma(\mathsf{cm}^2) \ L_\mathsf{int}(\mathsf{cm}^{-2})$$

Standard Model of Elementary Particles

The Large Hadron Collider (LHC)

Keith Pedersen

The Large Hadron Collider (LHC)

A tale of two bumps

$$\begin{array}{ccc} 4 & & & & & \\ 1 & & & & \\ \hline & & & \\ &$$

At $\sqrt{S} = 8$ TeV, the LHC saw the Higgs boson at $m_{\gamma\gamma} = 125$ GeV

Nucl.Part.Phys.Proc. 273-275 (2016) 2460-2462.

In 2015, first data at $\sqrt{S} = 13$ TeV saw excess in $m_{\gamma\gamma} \approx 750$ GeV.

A new particle?

P-25 theory seminar, LANL, 22 Oct 2018 3 / 40

Fall of the 750 GeV excess

By Aug 5, 2016, with 5 × more data at $\sqrt{S} = 13$ TeV, the bump was gone.

The high-energy and high-luminosity frontier will face harder problems than statistical anomalies!.

Collider energy and invariant mass

electron-positron collider

A proton collider is really a parton collider

• not pp
ightarrow q ar q but: $q ar q
ightarrow q' ar q', \ qg
ightarrow qg, \ gg
ightarrow q ar q$

•
$$p_1 = x_1 P_1$$

• $\sqrt{s} = \sqrt{(p_1 + p_2)^2} = 2\sqrt{x_1 x_2} E_{\text{beam}}$

New physics is wrapped in QCD

QCD has asymptotic freedom; hard scatter \mapsto busy final state.

- Initial-state radiation.
- Final-state radiation from quarks/gluons creates jets;
 - jet-parton duality
- Confinement ... colored particles must hadronize.

Reconstructing quark/gluon jets requires a jet definition.

- k_T jets *rewind* QCD shower.
- anti- k_{T} less sensitive to soft physics; popular at LHC.

An LHC detector

Keith Pedersen

P-25 theory seminar, LANL, 22 Oct 2018 7 / 40

What a detector sees

$\mathsf{charged}\mapsto \mathbf{tracks}$

$\mathsf{neutral} \mapsto \mathsf{towers}$

Keith Pedersen

Physics objects: tracks and towers

- Neutral tower: track energy subtracted from tower that was struck.
- massless tracks and neutral towers are clustered into massive jets.

A two-jet event with $\sqrt{s} = 3.25$ TeV

Keith Pedersen

P-25 theory seminar, LANL, 22 Oct 2018 10 / 40

Outline

- The search for new physics at the LHC
 All bumps are created equal (but some are more equal)
 Basics of LHC proton physics
 - Basics of Life proton physics

2 Revisiting the QCD power spectrum

- high-luminosity \implies high-pileup
- Using all available information
- The power spectrum H_ℓ (e.g., Fox-Wolfram moments)

3 Modification 1: Shape functions \Longrightarrow collinear safety

- H_{ℓ} for basic QCD events
- The angular resolution of a finite sample

Modification 2: The Power jets model

- The expected H_{ℓ} distributions
- Fitting a jet-like model to the H_{ℓ} observation
- Pileup: a natural extension
- H_{ℓ} for high energy **nuclear** physics

New physics is rare physics

How to find new physics:

- 1 Increase collider energy \sqrt{S} .
- **2** Increase luminosity L_{int} .

- Higher \sqrt{S} unlocks new physics.
- Higher *L* creates more events (better stats, more precision).

A caveat:

• More events \mapsto more pileup.

Pileup is here to stay

- Most pileup from other vertex charged pileup is largely reducible.
- The LHC is currently averaging 40 pileup events per hard scatter!
- The HL-LHC is expected to average $\mathcal{O}(200)!$

Pileup in anti- k_T jets

anti- $k_{\mathcal{T}}$ jets use one correlation at a time; find the smallest "distance"

$$d_i^2 = p_{T,i}^{-2}$$

$$d_{ij}^2 = \min(p_{T,i}^{-2}, p_{T,j}^{-2}) \frac{\Delta y_{ij}^2 + \Delta \phi_{ij}^2}{R^2}$$

cluster becomes a jet

merge two clusters

Eur.Phys.J. C76 (2016) 581

Learning from heavy-ion collisions

Keith Pedersen

Learning from heavy-ion collisions

The same-side ridge is attributed to collective flow of nuclear media.

Keith Pedersen

Connecting lead-lead to proton-proton

C(∆¢) C(∆ φ) ATLAS Preliminary ATLAS Preliminary √s=13 TeV, L_{int}≈14 nb⁻¹ Data 2015 √s=13 TeV, L_{int}≈14 nb⁻¹ Data 2015 1.05 1.02 10≤N^{rec}<30 50≤N^{rec}<60 0.5<p_{_{T}}^{a,b}<5.0 GeV 0.5<p_{_{T}}^{a,b}<5.0 GeV 2.0<|∆η|<5.0 2.0<|∆η|<5.0 0.95 $\Delta \phi$ Δø (@1.0 √ ∪ ATLAS Preliminary (¢∇)C ATLAS Preliminary √s=13 TeV, L_{int}≈14 nb⁻¹ √s=13 TeV, L_{int}≈14 nb⁻¹ 1.02 Data 2015 Data 2015 N^{rec}≥120 90≤N^{rec}<100 1.01 2.0<|∆η|<5.0 2.0<|∆η|<5.0 0.99 0.99 $\Delta \phi$ Λh

ATLAS-CONF-2015-027

Why is the same-side correlation seen in high-multiplicity pp collisions?

Event shape variables

Sphericity

3-jet structure \Longrightarrow $(e^+e^-
ightarrow q ar q g);$ first seen with Oblateness.

Event shape variables:

- Condense each event to a single number.
- Shape curves from many events.

Oblateness

Phys.Rev.Lett. 43 (1979) 830

Phys.Rev.Lett. 35 (1975) 1609-1612

The power spectrum of QCD radiation

$$S_{\ell} \equiv \sum_{m=-l}^{l} |E_{\ell}^{m}|^{2}$$

Spherical harmonics $Y_{\ell}^{m}(\theta, \phi)$

- degree ℓ number of lobes.
- order *m* lobe orientation.

$$E(\hat{r}) = \sum_{i} E_{i} \,\delta(\hat{r} - \hat{p}_{i})$$
 $E_{\ell}^{m} = \int_{\Omega} \mathrm{d}\Omega \; Y_{\ell}^{m*}(\hat{r}) \,E(\hat{r}) \,.$

The dimensionless power spectrum H_1

A dimensionless power spectrum scales out total detected energy $E_{\rm tot}$

$$\begin{split} \mathcal{H}_{\ell} &\equiv \frac{1}{2\ell+1} \frac{\sum_{m} |E_{\ell}^{m}|^{2}}{E_{\text{tot}}^{2}} = \frac{1}{4\pi} \int_{\Omega} d\Omega \int_{\Omega'} d\Omega' \rho(\hat{r}) \rho(\hat{r}') \mathcal{P}_{\ell}(\hat{r} \cdot \hat{r}') \\ \mathcal{H}_{0} &= 1 \qquad 0 \leq \mathcal{H}_{\ell} \leq 1 \qquad \xi_{\text{res}} = \frac{2\pi}{\ell} \\ \rho(\hat{r}) &= \sum_{i} f_{i} \,\delta(\hat{r} - \hat{p}_{i}) \qquad f_{i} \equiv \frac{E_{i}}{E_{\text{tot}}} \qquad \xi_{ij} \equiv \hat{p}_{i} \cdot \hat{p}_{j} \\ \text{Fox-Wolfram event shape} \qquad \text{energy fraction} \qquad \text{inter-particle angle} \end{split}$$

$$egin{aligned} \mathcal{H}_\ell = \sum_{i,j} f_i \, f_j \, \mathcal{P}_\ell(\cos \xi_{ij}) = ig\langle f | \, \mathcal{P}_\ell\Big(\left| \hat{p}
ight
angle \cdot ig\langle \hat{p} | \, \Big) \, | f ig
angle \end{aligned}$$

Fox and Wolfram, Phys. Rev. Lett. 41 (1978) 1581

Infrared and collinear safety of H_{ℓ}

$${\it H}_\ell = \sum_{i,\,j}\,f_i\,f_j\,{\it P}_\ell(\cos\xi_{ij})$$

How is H_{ℓ} affected when a particle radiates $(a \rightarrow b c)$?

- Infrared: a soft particle $(f \ll 1)$ has minimal weight in the H_{ℓ} sum.
- Collinear: daughters are not soft; creates small-angle correlations.

The Fox-Wolfram power spectrum is infrared safe, but collinear unsafe.

Outline

• All bumps are created equal (but some are *more equal*) Basics of LHC proton physics • high-luminosity \implies high-pileup Using all available information • The power spectrum H_{ℓ} (e.g., Fox-Wolfram moments) 3 Modification 1: Shape functions \implies collinear safety • H_{ℓ} for basic QCD events • The angular resolution of a finite sample • The expected H_{ℓ} distributions

- Fitting a jet-like model to the H_{ℓ} observation
- Pileup: a natural extension
- H_{ℓ} for high energy **nuclear** physics

Every 2-particle event

A two-particle event in the CM frame is not just a large H_2 moment.

Keith Pedersen

P-25 theory seminar, LANL, 22 Oct 2018 20 / 40

A 2-jet-like event (truth level)

- No broad CMB-like shapes!
- $H_{\ell} \sim \langle f | f \rangle$
- Oscillation about (f|f) implies correlation between high-l moments.

- H_2 is large; H_3 is small.
- Measurable particles only match originating partons at low *l*.
 Jet structure matters!

A 3-jet-like event (truth level)

Important features

- H_{ℓ} rapidly oscillates: CMB
- H_{ℓ} is unending: $H_{\ell} \sim \langle f | f \rangle$

 N ≠ n: N measurable particles don't match n original partons; jet structure matters.

A 3-jet-like event (truth level)

Important features

- H_{ℓ} rapidly oscillates: CMB
- H_{ℓ} is unending: $H_{\ell} \sim \langle f | f \rangle$

 N ≠ n: N measurable particles don't match n original partons; jet structure matters.

The multiplicity plateau and detector artifacts

Track-only $\leftarrow \{\text{Random isotropic } (\rho(\hat{r}) = \frac{1}{4\pi})\} \implies \text{Tower-only}$

$$H_{\ell} = \langle f | P_{\ell} (| \hat{p} \rangle \cdot \langle \hat{p} |) | f \rangle = \langle f | f \rangle + (\text{inter-particle})$$

$$\langle f|f
angle \propto rac{1}{N}; \qquad \quad \langle f|f
angle \geq rac{1}{N}$$

Multiplicity N limits angular resolution!

A sample's intrinsic angular resolution

A meaningful correlation must exceed the plateau at $\langle f|f\rangle \sim \frac{1}{N}$.

A conservative estimate of the sample's angular resolution ξ_{min} :

- **1** Sort inter-particle angles ξ_{ij} .
- 2 Find the k smallest ξ_{ij} whose total weight $\sum f_i f_j \ge \langle f | f \rangle$.

3
$$\xi_{\min} = \text{GeoMean}(k \text{ smallest } \xi_{ii}).$$

Suppress small-angle correlations; shape functions \Rightarrow extensive objects:

$$\rho(\hat{r}) = \sum_{i} f_i \delta(\hat{r} - \hat{p}_i) = \sum_{i} f_i h_i(\hat{r})$$

Natural resolution: kill correlations beyond the angular resolution ξ_{min} .

Shape functions as low-pass filters

Natural resolution: kill correlations beyond ξ_{min} with shape functions:

$$\rho(\hat{r}) = \sum_{i} f_i \, \delta(\hat{r} - \hat{p}_i) = \sum_{i} f_i \, h_i(\hat{r})$$

Tracks: pseudo-normal in polar angle θ :

$$h(\theta) \approx C \exp\left(-\frac{\theta^2}{2\lambda^2}\right)$$

Towers: spherical cap spanning each tower's solid angle Ω_{twr} . \hat{p}_i \hat{r}

Adds shape coefficients \bar{h}_{ℓ} to H_{ℓ} :

$$H_{\ell} = \sum_{i,j} \bar{h}_{(i)\ell} \bar{h}_{(j)\ell} \underbrace{\left(f_{i} f_{j} P_{\ell} \left(\hat{p}_{i} \cdot \hat{p}_{j}\right)\right)}_{H_{\ell} \text{ of } \delta\text{-distribution}}$$

If all
$$\bar{h}_{\ell}$$
 have similar values:

 $H_\ell pprox h_\ell^2 \, H_\ell^{\delta-{
m particle}}$

P-25 theory seminar, LANL, 22 Oct 2018 25 / 40

Shape functions restore collinear safety

$$A(\cos\xi) = \sum_{\ell} (2\ell+1) H_{\ell} P_{\ell}(\cos\xi)$$

Outline

• All bumps are created equal (but some are *more equal*) Basics of LHC proton physics • high-luminosity \implies high-pileup Using all available information • The power spectrum H_{ℓ} (e.g., Fox-Wolfram moments) • H_{ρ} for basic QCD events The angular resolution of a finite sample Modification 2: The Power jets model • The expected H_{ℓ} distributions • Fitting a jet-like model to the H_{ℓ} observation

- Pileup: a natural extension
- H_{ℓ} for high energy **nuclear** physics

The expected H_{ℓ} distributions

Fox and Wolfram defined H_{ℓ} to differentiate two final states:

• $e^+e^- \rightarrow \gamma \rightarrow q\bar{q}g$ generic QCD. • $e^+e^- \rightarrow X \rightarrow ggg$ a new, heavy resonance.

Integrate over $\frac{d\sigma}{\sigma \prod_i dp_i^{\mu}}$ to generate probability distributions $f(H_{\ell})$:

- QCD radiation fluctuates event-to-event:
 - Angular resolution ξ_{\min} depends on multiplicity N.
 - High-ℓ moments depend on jet shape (N ≠ n).
- f(H_ℓ) for different ℓ are not independent!

Fox-Wolfram $f(H_{\ell})$ are not independent.

The power jets fit

observable power spectrum *n*-prong power spectrum $\rho(\hat{r})_{\sf obs} = \sum_{i=1} f_i h_i(\hat{r})$ $\rho(\hat{r})_{\mathsf{fit}} = \sum_{j=1} f_j h_j(\hat{r})$ $N \gg n$ ∜ \downarrow $H_{\ell}^{\rm obs}$ H^{fit}_{ℓ} $\chi_{\ell} = H_{\ell}^{\mathsf{fit}} - H_{\ell}^{\mathsf{obs}}$ prongs \Rightarrow hard radiation prong shape $h_i(\hat{r}) \Rightarrow$ soft radiation 0.8 $_{H}^{l}$ 0.6 0.40.2prong mass \mapsto shape 25501250 75100 150

The power jets model

Describe hard QCD radiation with a binary splitting tree $(a \rightarrow b c)$.

 $\boldsymbol{p}_a = \boldsymbol{p}_b + \boldsymbol{p}_c$

Four degrees of freedom per splitting node ($\boldsymbol{p}_b = [E_b, \vec{p}_b]$).

Prong shape $h_i(\hat{r})$ needs physical basis (not pseudo-normal a priori).

Prong shape functions

Prong shape in CM frame — azimuthally symmetric Legendre series:

$$h_{\mathsf{CM}}(\hat{r}) = \frac{1}{2} + \sum_{\ell=2}^{\infty} c_{\ell} P_{\ell}(\hat{r} \cdot \hat{p}) \quad \xrightarrow{\text{Boost to}}_{\text{lab frame}} \quad h(\hat{r}) \quad \xrightarrow{\text{Calculate}}_{\text{coefficient}} \quad \bar{h}_{\ell}$$

• **Boost** determined from p^{μ} .

We restrict our initial studies to scalar (J = 0) CM shape.

Fitting a 2-jet-like event

3-prong

1 0.8Fit 0.6 H_l 0.40.20 51015202530 350 40

The 3-prong model doesn't match l > 10 (36°); need another prong.

4-prong

Fitting a 3-jet-like event

Fit

40

30 35

Keith Pedersen

Jets without boundaries

Jets without boundaries

- No fixed radius R ... narrow and fat topologies can coexist.
- No exclusive constituents ... boundary particles shared.

Power jets provide superb reconstruction

Table : Reconstructed 3-jet kinematics for the 2-jet-like event.

(GeV)	E ₁	E ₂	E ₃
parton	190.1	172.8	37.00
power jets	190.4(0)	174.2(1)	35.52(8)
error	0.1%	0.7%	-4%

Table : Reconstructed 3-jet kinematics for the 3-jet-like event.

(GeV)	E ₁	E ₂	E ₃
parton	163.0	143.5	93.56
power jets	162.0(1)	146.3(4)	91.68(4)
error	-0.6%	2.0%	-2.0%

Pileup (soft QCD) is a global shape

Add pileup to the event shape:

$$\rho(\hat{r}) = \rho(\hat{r})_{hard} + \rho(\hat{r})_{PU} = (1 - f_{PU}) \sum_{j} f_{j} h_{(j)}(\hat{r}) + f_{PU} \frac{h_{PU}(\hat{r})}{h_{PU}(\hat{r})}$$

 $h_{\rm PU}(\hat{r})$ can be measured from pileup-only events (lacking a hard scatter).

- Measure pileup H_{ℓ} directly; no soft-QCD model needed!
- Pileup-only events are abundant (min-bias)! LHC's trash \rightarrow treasure.
- 1 free parameter; pileup energy fraction f_{PU} .

Keith Pedersen

Using noise-noise correlations to see the signal

Heavy-ion collisions

The power spectrum is naturally suited for global shapes:

- Each local prong needs at least four free parameters.
- The global shape of *pp* pileup required only **one** parameter.

Pb-Pb collisions \Rightarrow global shapes:

P-25 theory seminar, LANL, 22 Oct 2018 38 / 40

See more by using less!

Five unrelated Pythia heavy-ion events (Pb-Pb; $\sqrt{S} = 2.76 \,\text{GeV}$).

- The raw H_l (Fox-Wolfram) is sensitive to local fluctuations at high-l.
- The **refined** power spectrum is far smoother:
 - Angular resolution ξ_{\min} .
 - Smear tracks to ξ_{\min} with pseudo-normal shape.
 - Towers use circular cap subtending Ω_{twr} .

A low-pass filter reveals **common structure**; exciting possibilities!

Fully utilizing global correlations

We modify the QCD power spectrum:

- **()** shape functions \Rightarrow low-pass filter.
- **2** Fit H_{ℓ}^{obs} to an *n*-prong model.

A simultaneous fit to all information:

- Jets without boundaries.
- Pileup without subtraction.

What can the refined power spectrum tell us about nuclear physics?

P-25 theory seminar, LANL, 22 Oct 2018 40 / 40

Thank you for your attention!