Good to the last drop: fully utilizing a pp collision's correlated information with the QCD power spectrum

Keith Pedersen
(kpeders1@hawk.iit.edu) with
Zack Sullivan (Zack.Sullivan@iit.edu)

ILLINOIS INSTITUTE OF TECHNOLOGY

P-25 theory seminar, Los Alamos National Laboratory, 22 Oct 2018

These slides are now available at www. HEPguy.com

Outline

(1) The search for new physics at the LHC

- All bumps are created equal (but some are more equal)
- Basics of LHC proton physics
(2) Revisiting the QCD power spectrum
- high-luminosity \Longrightarrow high-pileup
- Using all available information
- The power spectrum H_{ℓ} (e.g., Fox-Wolfram moments)
(3) Modification 1: Shape functions \Longrightarrow collinear safety
- H_{ℓ} for basic QCD events
- The angular resolution of a finite sample
(4) Modification 2: The Power jets model
- The expected H_{ℓ} distributions
- Fitting a jet-like model to the H_{ℓ} observation
- Pileup: a natural extension
- H_{ℓ} for high energy nuclear physics

What is matter, and how does it work?

Scattering jargon

$\sigma=$ scattering cross section
$L=$ collider luminosity

$$
L_{\mathrm{int}}=\int L d t \quad \text { (sample size) }
$$

$\mathrm{Ex}($ collisions $)=\sigma\left(\mathrm{cm}^{2}\right) L_{\text {int }}\left(\mathrm{cm}^{-2}\right)$

Standard Model of Elementary Particles

The Large Hadron Collider (LHC)

The Large Hadron Collider (LHC)

A tale of two bumps

At $\sqrt{S}=8 \mathrm{TeV}$, the LHC saw the Higgs boson at $m_{\gamma \gamma}=125 \mathrm{GeV}$

Nucl.Part.Phys.Proc. 273-275 (2016) 2460-2462.

In 2015, first data at $\sqrt{S}=13 \mathrm{TeV}$ saw excess in $m_{\gamma \gamma} \approx 750 \mathrm{GeV}$.

A new particle?

JHEP 1609 (2016) 001

Fall of the 750 GeV excess

By Aug 5, 2016, with $5 \times$ more data at $\sqrt{S}=13 \mathrm{TeV}$, the bump was gone.

The high-energy and high-luminosity frontier will face harder problems than statistical anomalies!.

Collider energy and invariant mass

electron-positron collider

$$
\text { - } e^{+} e^{-} \rightarrow q \bar{q} g
$$

- $P_{1}=E_{\text {beam }}[1,+\hat{z}]$
- $\sqrt{S}=\sqrt{\left(P_{1}+P_{2}\right)^{2}}=2 E_{\text {beam }}$

A proton collider is really a parton collider

- not $p p \rightarrow q \bar{q}$ but:

$$
q \bar{q} \rightarrow q^{\prime} \bar{q}^{\prime}, q g \rightarrow q g, g g \rightarrow q \bar{q}
$$

- $\boldsymbol{p}_{1}=x_{1} \boldsymbol{P}_{1}$
- $\sqrt{s}=\sqrt{\left(\boldsymbol{p}_{1}+\boldsymbol{p}_{2}\right)^{2}}=2 \sqrt{x_{1} x_{2}} E_{\text {beam }}$

New physics is wrapped in QCD

QCD has asymptotic freedom; hard scatter \mapsto busy final state.

- Initial-state radiation.
- Final-state radiation from quarks/gluons creates jets;
- jet-parton duality
- Confinement . . . colored particles must hadronize.

Reconstructing quark/gluon jets requires a jet definition.

- k_{T} jets rewind QCD shower.
- anti- k_{T} less sensitive to soft physics; popular at LHC.

An LHC detector

CMS DETECTOR

Total weight Overall diamete
Overall length
Magnetic field
: 14,000 tonnes
15.0 m
: 28.7 m
3.8 T

STEEL RETURN YOKE
12,500 tonnes

SILICON TRACKERS
Pixel ($100 \times 150 \mu \mathrm{~m}$) $\sim 16 \mathrm{~m}^{2} \sim 66 \mathrm{M}$ channels
Microstrips $(80 \times 180 \mu \mathrm{~m}) \sim 200 \mathrm{~m}^{2} \sim 9.6 \mathrm{M}$ channels
Niobeonducting SOLENOID
Niobium titanium coil carrying $\sim 18,000 \mathrm{~A}$

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
Silicon strips $\sim 16 \mathrm{~m}^{2} \sim 137,000$ channels

FORWARD CALORIMETER
Steel + Quartz fibres $\sim 2,000$ Channels

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
$\sim 76,000$ scintillating PbWO_{4} crystals

HADRON CALORIMETER (HCAL) Brass + Plastic scintillator $\sim 7,000$ channels

What a detector sees

Physics objects: tracks and towers

- Neutral tower: track energy subtracted from tower that was struck.
- massless tracks and neutral towers are clustered into massive jets.

A two-jet event with $\sqrt{s}=3.25 \mathrm{TeV}$

Outline

(1) The search for new physics at the LHC

- All bumps are created equal (but some are more equal)
- Basics of LHC proton physics
(2) Revisiting the QCD power spectrum
- high-luminosity \Longrightarrow high-pileup
- Using all available information
- The power spectrum H_{ℓ} (e.g., Fox-Wolfram moments)
(3) Modification 1: Shape functions \Longrightarrow collinear safety
- H_{ℓ} for basic QCD events
- The angular resolution of a finite sample
(4) Modification 2: The Power jets model
- The expected H_{ℓ} distributions
- Fitting a jet-like model to the H_{ℓ} observation
- Pileup: a natural extension
- H_{ℓ} for high energy nuclear physics

New physics is rare physics

How to find new physics:
(1) Increase collider energy \sqrt{S}.
(2) Increase luminosity $L_{\text {int }}$.

- Higher \sqrt{S} unlocks new physics.
- Higher L creates more events (better stats, more precision).

A caveat:

- More events \mapsto more pileup.

Pileup is here to stay

- Most pileup from other vertex - charged pileup is largely reducible.
- The LHC is currently averaging 40 pileup events per hard scatter!
- The HL-LHC is expected to average $\mathcal{O}(200)$!

Pileup in anti- k_{T} jets

anti- k_{T} jets use one correlation at a time; find the smallest "distance"

$$
\begin{aligned}
& d_{i}^{2}=p_{T, i}^{-2} \\
& d_{i j}^{2}=\min \left(p_{T, i}^{-2}, p_{T, j}^{-2}\right) \frac{\Delta y_{i j}^{2}+\Delta \phi_{i j}^{2}}{R^{2}}
\end{aligned}
$$ cluster becomes a jet merge two clusters

Eur.Phys.J. C76 (2016) 581

Learning from heavy-ion collisions

Learning from heavy-ion collisions

Phys.Lett. B724 (2013) 213-240
The same-side ridge is attributed to collective flow of nuclear media.

Connecting lead-lead to proton-proton

ATLAS-CONF-2015-027

Why is the same-side correlation seen in high-multiplicity $p p$ collisions?

Event shape variables

Sphericity

--- Monte Carlo, Phase Space

- Monte Carlo, Limited

Transverse Momentum

Phys.Rev.Lett. 35 (1975) 1609-1612

Oblateness
\Longleftarrow 2-jet structure $\left(e^{+} e^{-} \rightarrow q \bar{q}\right)$;
first seen with Sphericity.

3-jet structure \Longrightarrow $\left(e^{+} e^{-} \rightarrow q \bar{q} g\right) ;$
first seen with Oblateness.

Event shape variables:

- Condense each event to a single number.
- Shape curves from many events.

Phys.Rev.Lett. 43 (1979) 830

The power spectrum of QCD radiation

Spherical harmonics $Y_{\ell}^{m}(\theta, \phi)$

- degree ℓ - number of lobes.
- order m - lobe orientation.

$$
\begin{gathered}
E(\hat{r})=\sum_{i} E_{i} \delta\left(\hat{r}-\hat{p}_{i}\right) \\
E_{\ell}^{m}=\int_{\Omega} \mathrm{d} \Omega Y_{\ell}^{m *}(\hat{r}) E(\hat{r})
\end{gathered}
$$

The dimensionless power spectrum H_{1}

A dimensionless power spectrum scales out total detected energy $E_{\text {tot }}$

$$
H_{\ell} \equiv \frac{1}{2 \ell+1} \frac{\sum_{m}\left|E_{\ell}^{m}\right|^{2}}{E_{\mathrm{tot}}^{2}}=\frac{1}{4 \pi} \int_{\Omega} \mathrm{d} \Omega \int_{\Omega^{\prime}} \mathrm{d} \Omega^{\prime} \rho(\hat{r}) \rho\left(\hat{r}^{\prime}\right) P_{\ell}\left(\hat{r} \cdot \hat{r}^{\prime}\right)
$$

$$
H_{0}=1 \quad 0 \leq H_{\ell} \leq 1 \quad \xi_{\text {res }}=\frac{2 \pi}{\ell}
$$

$$
\rho(\hat{r})=\sum_{i} f_{i} \delta\left(\hat{r}-\hat{p}_{i}\right) \quad f_{i} \equiv \frac{E_{i}}{E_{\text {tot }}} \quad \xi_{i j} \equiv \hat{p}_{i} \cdot \hat{p}_{j}
$$

Fox-Wolfram event shape energy fraction inter-particle angle

$$
H_{\ell}=\sum_{i, j} f_{i} f_{j} P_{\ell}\left(\cos \xi_{i j}\right)=\langle f| P_{\ell}(|\hat{p}\rangle \cdot\langle\hat{p}|)|f\rangle
$$

Fox and Wolfram, Phys. Rev. Lett. 41 (1978) 1581

Infrared and collinear safety of H_{l}

$$
H_{\ell}=\sum_{i, j} f_{i} f_{j} P_{\ell}\left(\cos \xi_{i j}\right)
$$

How is H_{ℓ} affected when a particle radiates $(a \rightarrow b c)$?

- Infrared: a soft particle $(f \ll 1)$ has minimal weight in the H_{ℓ} sum.
- Collinear: daughters are not soft; creates small-angle correlations. The Fox-Wolfram power spectrum is infrared safe, but collinear unsafe.
- Ignore H_{ℓ} above $\ell_{\max }$?
- How to determine $\ell_{\text {max }}$?
- How much meaningful information exists in an N-particle final state?

"Safe"

Outline

(1) The search for new physics at the LHC

- All bumps are created equal (but some are more equal)
- Basics of LHC proton physics
(2) Revisiting the QCD power spectrum
- high-luminosity \Longrightarrow high-pileup
- Using all available information
- The power spectrum H_{l} (e.g., Fox-Wolfram moments)
(3) Modification 1: Shape functions \Longrightarrow collinear safety
- H_{ℓ} for basic QCD events
- The angular resolution of a finite sample
(4) Modification 2: The Power jets model
- The expected H_{ℓ} distributions
- Fitting a jet-like model to the H_{ℓ} observation
- Pileup: a natural extension
- H_{ℓ} for high energy nuclear physics

Every 2-particle event

A two-particle event in the CM frame is not just a large H_{2} moment.

$$
\rho(\hat{r})=\delta(\hat{r}+\hat{z})+\delta(\hat{r}-\hat{z})=\sum_{\ell \in \text { even }} \sqrt{\frac{2 \ell+1}{4 \pi}} Y_{\ell}^{0}(\hat{r})
$$

A 2-jet-like event (truth level)

- No broad CMB-like shapes!
- $H_{\ell} \sim\langle f \mid f\rangle$
- Oscillation about $\langle f \mid f\rangle$ implies correlation between high- ℓ moments.
- H_{2} is large; H_{3} is small.
- Measurable particles only match originating partons at low ℓ. Jet structure matters!

A 3-jet-like event (truth level)

Important features

- H_{ℓ} rapidly oscillates: CABB
- H_{ℓ} is unending: $H_{\ell} \sim\langle f \mid f\rangle$
- $N \neq n$: N measurable particles don't match n original partons; jet structure matters.

A 3-jet-like event (truth level)

Important features

- H_{ℓ} rapidly oscillates: CABB
- H_{ℓ} is unending: $H_{\ell} \sim\langle f \mid f\rangle$
- $N \neq n$: N measurable particles don't match n original partons; jet structure matters.

The multiplicity plateau and detector artifacts

Track-only $\Longleftarrow\left\{\right.$ Random isotropic $\left.\left(\rho(\hat{r})=\frac{1}{4 \pi}\right)\right\} \Longrightarrow$ Tower-only

$H_{\ell}=\langle f| P_{\ell}(|\hat{p}\rangle \cdot\langle\hat{p}|)|f\rangle=\langle f \mid f\rangle+$ (inter-particle)

$$
\langle f \mid f\rangle \propto \frac{1}{N} ; \quad\langle f \mid f\rangle \geq \frac{1}{N}
$$

Multiplicity N limits angular resolution!

A sample's intrinsic angular resolution

A meaningful correlation must exceed the plateau at $\langle f \mid f\rangle \sim \frac{1}{N}$.

A conservative estimate of the sample's angular resolution $\xi_{\text {min }}$:
(1) Sort inter-particle angles $\xi_{i j}$.
(2) Find the k smallest $\xi_{i j}$ whose total weight $\sum f_{i} f_{j} \geq\langle f \mid f\rangle$.
(3) $\xi_{\text {min }}=$ GeoMean $\left(k\right.$ smallest $\left.\xi_{i j}\right)$.

Suppress small-angle correlations; shape functions \Rightarrow extensive objects:

$$
\rho(\hat{r})=\sum_{i} f_{i} \delta\left(\hat{r}-\hat{p}_{i}\right)=\sum_{i} f_{i} h_{i}(\hat{r})
$$

Natural resolution: kill correlations beyond the angular resolution $\xi_{\text {min }}$.

Shape functions as low-pass filters

Natural resolution: kill correlations beyond $\xi_{\min }$ with shape functions:
$\rho(\hat{r})=\sum_{i} f_{i} \delta\left(\hat{r}-\hat{p}_{i}\right)=\sum_{i} f_{i} h_{i}(\hat{r})$

Tracks:

pseudo-normal in polar angle θ :
$h(\theta) \approx C \exp \left(-\frac{\theta^{2}}{2 \lambda^{2}}\right)$
Towers:
spherical cap
spanning each tower's solid angle Ω_{twr}.

Adds shape coefficients \bar{h}_{ℓ} to H_{ℓ} :

$$
H_{\ell}=\sum_{i, j} \bar{h}_{(i) \ell} \bar{h}_{(j)_{\ell}} \underbrace{\left(f_{i} f_{j} P_{\ell}\left(\hat{p}_{i} \cdot \hat{p}_{j}\right)\right)}_{H_{\ell} \text { of } \delta \text {-distribution }}
$$

If all \bar{h}_{ℓ} have similar values:

$$
H_{\ell} \approx h_{\ell}^{2} H_{\ell}^{\delta-\text { particle }}
$$

Shape functions restore collinear safety

Angular correlation function
(EEC for infinitesimal Ω)

$$
A(\cos \xi)=\sum_{\ell}(2 \ell+1) H_{\ell} P_{\ell}(\cos \xi)
$$

Outline

(1) The search for new physics at the LHC

- All bumps are created equal (but some are more equal)
- Basics of LHC proton physics
(2) Revisiting the QCD power spectrum
- high-luminosity \Longrightarrow high-pileup
- Using all available information
- The power spectrum H_{l} (e.g., Fox-Wolfram moments)
(3) Modification 1: Shape functions \Longrightarrow collinear safety
- H_{ℓ} for basic QCD events
- The angular resolution of a finite sample
(4) Modification 2: The Power jets model
- The expected H_{ℓ} distributions
- Fitting a jet-like model to the H_{ℓ} observation
- Pileup: a natural extension
- H_{ℓ} for high energy nuclear physics

The expected H_{ℓ} distributions

Fox and Wolfram defined H_{ℓ} to differentiate two final states:

- $e^{+} e^{-} \rightarrow \gamma \rightarrow q \bar{q} g$ generic QCD.
- $e^{+} e^{-} \rightarrow X \rightarrow g g g$................................ new, heavy resonance.

Integrate over $\frac{\mathrm{d} \sigma}{\sigma \prod_{i} \mathrm{~d} p_{i}^{\mu}}$ to generate probability distributions $f\left(H_{\ell}\right)$:

Phys. Rev. Lett 41 (1978) 1581

$q \bar{q}$ (dotted), $q \bar{q} g$ (solid), $X \rightarrow g g g$ (dashed)

- QCD radiation fluctuates event-to-event:
- Angular resolution $\xi_{\text {min }}$ depends on multiplicity N.
- High- ℓ moments depend on jet shape ($N \neq n$).
- $f\left(H_{\ell}\right)$ for different ℓ are not independent!

Fox-Wolfram $f\left(H_{\ell}\right)$ are not independent.

The power jets fit

observable power spectrum

$$
\begin{aligned}
& \rho(\hat{r})_{\text {obs }}=\sum_{i=1}^{N} f_{i} h_{i}(\hat{r}) \quad N \gg n \\
& \Downarrow \\
& H_{\ell}^{\text {obs }} \\
& \chi_{\ell}=H_{\ell}^{\mathrm{fit}}-H_{\ell}^{\mathrm{obs}} \\
& \rho(\hat{r})_{\mathrm{fit}}=\sum_{j=1}^{n} f_{j} h_{j}(\hat{r}) \\
& \Downarrow \\
& H_{\ell}^{\mathrm{fit}}
\end{aligned}
$$

prongs \Rightarrow hard radiation prong shape $h_{j}(\hat{r}) \Rightarrow$ soft radiation

The power jets model

Describe hard QCD radiation with a binary splitting tree $(a \rightarrow b c)$.

$$
\boldsymbol{p}_{a}=\boldsymbol{p}_{b}+\boldsymbol{p}_{c}
$$

Four degrees of freedom per splitting node $\left(\boldsymbol{p}_{b}=\left[E_{b}, \vec{p}_{b}\right]\right)$.

Prong shape $h_{j}(\hat{r})$ needs physical basis (not pseudo-normal a priori).

Prong shape functions

Prong shape in CM frame - azimuthally symmetric Legendre series:

$$
h_{\mathrm{CM}}(\hat{r})=\frac{1}{2}+\sum_{\ell=2}^{\infty} c_{\ell} P_{\ell}(\hat{r} \cdot \hat{p}) \xrightarrow[\text { lab frame }]{\text { Boost to }} h(\hat{r}) \xrightarrow[\text { coefficient }]{\text { Calculate }} \bar{h}_{\ell}
$$

- Boost determined from p^{μ}.
- c_{ℓ} constrained by $h_{\mathrm{CM}}(\hat{r}) \geq 0$.

Fitting a 2-jet-like event

4-prong

The 3-prong model doesn't match $I>10\left(36^{\circ}\right)$; need another prong.

Fitting a 3-jet-like event

3-prong

For a 3-jet-like event - 6 prongs:

6-prong

Jets without boundaries

Jets without boundaries

- No fixed radius $R \ldots$ narrow and fat topologies can coexist.
- No exclusive constituents ... boundary particles shared.

Power jets provide superb reconstruction

Table: Reconstructed 3-jet kinematics for the 2-jet-like event.

(GeV)	E_{1}	E_{2}	E_{3}
parton	190.1	172.8	37.00
power jets	$190.4(0)$	$174.2(1)$	$35.52(8)$
error	0.1%	0.7%	-4%

Table: Reconstructed 3-jet kinematics for the 3-jet-like event.

(GeV)	E_{1}	E_{2}	E_{3}
parton	163.0	143.5	93.56
power jets	$162.0(1)$	$146.3(4)$	$91.68(4)$
error	-0.6%	2.0%	-2.0%

Pileup (soft QCD) is a global shape

Add pileup to the event shape:

$$
\rho(\hat{r})=\rho(\hat{r})_{\mathrm{hard}}+\rho(\hat{r})_{\mathrm{PU}}=\left(1-f_{\mathrm{PU}}\right) \sum_{j} f_{j} h_{(j)}(\hat{r})+f_{\mathrm{PU}} h_{\mathrm{PU}}(\hat{r})
$$

$h_{\mathrm{PU}}(\hat{r})$ can be measured from pileup-only events (lacking a hard scatter).

- Measure pileup H_{ℓ} directly; no soft-QCD model needed!
- Pileup-only events are abundant (min-bias)! LHC's trash \rightarrow treasure.
- 1 free parameter; pileup energy fraction f_{PU}.

Using noise-noise correlations to see the signal

$$
S / N=1 \quad\left(f_{\mathrm{PU}}=0.5\right)
$$

$$
S / N=1 / 5 \quad\left(f_{\mathrm{PU}}=0.8\right)
$$

power jets

anti- k_{T}

power jets

anti- k_{T}

Heavy-ion collisions

The power spectrum is naturally suited for global shapes:

- Each local prong needs at least four free parameters.
- The global shape of pp pileup required only one parameter.

$\mathrm{Pb}-\mathrm{Pb}$ collisions \Rightarrow global shapes:

Power spectrum of a $\mathrm{Pb}-\mathrm{Pb}$ collision

See more by using less!

Five unrelated Pythia heavy-ion events ($\mathrm{Pb}-\mathrm{Pb} ; \sqrt{S}=2.76 \mathrm{GeV}$).

- The raw H_{ℓ} (Fox-Wolfram) is sensitive to local fluctuations at high- ℓ.
- The refined power spectrum is far smoother:
- Angular resolution $\xi_{\text {min }}$.
- Smear tracks to $\xi_{\text {min }}$ with pseudo-normal shape.
- Towers use circular cap subtending $\Omega_{\text {twr }}$.

A low-pass filter reveals common structure; exciting possibilities!

Fully utilizing global correlations

We modify the QCD power spectrum:
(1) shape functions \Rightarrow low-pass filter.
(2) Fit $H_{\ell}^{\text {obs }}$ to an n-prong model.

A simultaneous fit to all information:

- Jets without boundaries.
- Pileup without subtraction.

What can the refined power spectrum tell us about nuclear physics?

Thank you

Thank you for your attention!

