### Spherical harmonics for multiparticle final states

Keith Pedersen (kpeders1@hawk.iit.edu)



In collaboration with Zack Sullivan

CTEQ meeting, FNAL, 20 Oct 2017

## Outline

### The shape of QCD

- Can we probe QCD like the CMB power spectrum?
- Can we suppress/identify pileup?

#### 2 A multipole expansion

- The power spectrum of multiparticle final states
- Interpreting the power spectrum

#### **3** Jet shapes from the QCD power spectrum

- The  $H_l$  jet definition
- Adding jet shapes
- Sweeping away pileup

## The ideal event shape variable



Jet clustering from N physics objects; at each step, the evolution is guided by only one of the  $N^2$  two-particle correlations.

Event shape variables (sphericity) are more holistic, but tend to be 1-dim.

Ideally, a shape curve could describe a single event, and we could:

- Extract jet kinematics.
- Tag interesting signatures.
- Probe QCD at new scales.

A multipole expansion of *E* density?

$$\rho_I^m = \int \mathrm{d}\Omega \; Y_I^{m*}(\theta,\phi) \, \rho(\theta,\phi)$$

1 / 19

## Can we characterize final states like the CMB?



Can we identify broad shapes with known physics?

Keith Pedersen (IIT)

2 / 19

### Can we study long distance correlations?



Can the ridge be quark-gluon plasma if we see it in pp collisions?

Keith Pedersen (IIT)

# Can we identify/suppress pileup at the HL-LHC?



Pileup at the HL-LHC will be intense. We will need to:

- Remove pileup from jets and identify pileup-only jets.
- Distinguish boosted top from QCD jets + pileup.
- Find W 
  ightarrow q ar q for precision electroweak measurements.

### The shape of QCD

- Can we probe QCD like the CMB power spectrum?
- Can we suppress/identify pileup?

### 2 A multipole expansion

- The power spectrum of multiparticle final states
- Interpreting the power spectrum

#### **3** Jet shapes from the QCD power spectrum

- The  $H_1$  jet definition
- Adding jet shapes
- Sweeping away pileup

## The power spectrum $H_1$ of a single event

Expand an event's energy distribution  $\rho(\theta, \phi)$  into spherical harmonics

$$\rho_l^m = \int \mathrm{d}\Omega \; Y_l^{m*}(\theta, \phi) \, \rho(\theta, \phi) \quad \Longrightarrow \quad \left| H_l = \frac{1}{E_{\text{tot}}^2} \frac{4\pi}{2l+1} \sum_{m=-l}^l |\rho_l^m|^2 \right|$$

We detect a finite sampling of N discrete particles

$$\rho(\theta, \phi) = E_{\text{tot}} \sum_{i=1}^{N} f_i \, \delta^2(\theta_i, \phi_i) \quad \left( \text{energy fraction } f_i \equiv \frac{|\vec{p}_i|}{E_{\text{tot}}} \right) \, .$$

This gives the power spectrum introduced by Fox and Wolfram in 1978

$$H_{l} = \sum_{i,j} \frac{|\vec{p}_{i}| |\vec{p}_{j}|}{E_{vis}^{2}} P_{l}(\cos \theta_{ij}) = \sum_{i,j} f_{i} f_{j} P_{l}(\cos \theta_{ij}).$$

Needs high particle multiplicity:  $\underbrace{13 \text{ TeV}}_{2017} \gg \underbrace{19 \text{ GeV}}_{1978} \dots$  time to revisit  $H_{l}$ .

5 / 19

# $H_1$ of simple matrix elements (in the CM frame)



# $H_1$ of simple matrix elements (in the CM frame)



### Multiplicity attenuates $H_1$ to a white noise plateau

$$H_I \approx \sum_{I \to \infty} \sum f_i^2 \sim 1/N \implies$$
 The power spectrum flattens to a plateau

 $\rho(\theta,\phi) = \sum_{i} f_{i} \,\delta^{3}(\hat{p}_{i} - \hat{r}) \quad \Longrightarrow \quad \text{We get } H_{I} \text{ from a } discrete \text{ sample }.$ 

 $\int_{-\infty}^{\infty} \delta(x) e^{-ikx} dx = 1 \implies \delta(x) \text{ has uniform power (white noise)}.$ 



This explains why the 2-jet power spectrum has every even power and no odd power

### Multiplicity attenuates $H_1$ to a white noise plateau

$$H_I \approx \sum_{I \to \infty} \sum f_i^2 \sim 1/N \implies$$
 The power spectrum flattens to a plateau

 $\rho(\theta,\phi) = \sum_{i} f_i \,\delta^3(\hat{p}_i - \hat{r}) \quad \Longrightarrow \quad \text{We get } H_I \text{ from a } discrete \text{ sample }.$ 

 $\int_{-\infty}^{\infty} \delta(x) e^{-ikx} dx = 1 \implies \delta(x) \text{ has uniform power (white noise)}.$ 



To suppress high-frequency white noise, make particles **extensive** 



### Showered, smeared power spectra



### Showered, smeared power spectra



### Showered, smeared power spectra



## Outline

### The shape of QCD

- Can we probe QCD like the CMB power spectrum?
- Can we suppress/identify pileup?

#### A multipole expansion

- The power spectrum of multiparticle final states
- Interpreting the power spectrum

### **3** Jet shapes from the QCD power spectrum

- The  $H_l$  jet definition
- Adding jet shapes
- Sweeping away pileup

# The $H_1$ jet definition

Calculate  $H_I$  for *n*-jet toy system, fit to  $H_I$  for *N* detected particles.

$$H_{l} = \sum_{i,j} f_{i}f_{j}P_{l}(\cos\theta_{ij}), \quad f_{i} \equiv \frac{E_{i}}{\sqrt{s}}$$
$$\chi_{l} = H_{l}^{\text{reco}} - H_{l}^{\text{obs}}$$

$$e^+e^- 
ightarrow 3j, \; \sqrt{s} =$$
 400 GeV



#### Jets without an R parameter!

$$(\boldsymbol{p}_1 + \boldsymbol{p}_2)^2 = s \left( (f_1 + f_2)^2 - f_3^2 \right)$$



3 jets won't match plateau  $(H_l \sim 1/N \text{ as } l \rightarrow \infty).$ 

- Utility requires  $n \ll N$ .
- The plateau pressures jet equilibration  $(f_i = \frac{1}{n})$ .
- Fit to I<sub>max</sub>, determined by χ<sup>2</sup> < ε max(H<sub>I</sub>)

### Fitting a 2-jet-like event



3-jet fit overestimates  $H_l$  for l > O(10).

### Fitting a 3-jet-like event











## Jet shape

- An *n*-jet model cannot fit  $H_l$  for busy final states  $(N \gg n)$ .
- Sending  $n \rightarrow N$  fixes the problem, but is highly overfit.
- δ-functions are too thin; jets are extensive!
- Simplest jet shape: scalar decay boosted into the lab frame.



## Calculating $H_l^{\text{reco}}$ for arbitrary shapes

Given some arbitrary density

$$\rho(\hat{r}) = \rho_{(1)}(\hat{r}) + \rho_{(2)}(\hat{r}) + \ldots + \rho_{(n)}(\hat{r}),$$

we can calculate the spectral power *two ways*  $(A_l = \frac{1}{E_{tot}^2} \frac{4\pi}{2l+1})$ 

$$H_{I} = A_{I} \sum_{m=-l}^{l} |\rho_{I}^{m}|^{2} = A_{I} \int d\Omega \int d\Omega' P_{I}(\hat{r} \cdot \hat{r}') \rho(\hat{r}) \rho(\hat{r}')$$
$$= A_{I} \sum_{m=-l}^{+l} \left( \rho_{(1)_{I}}^{m} \rho_{(1)_{I}}^{m*} + 2\rho_{(1)_{I}}^{m} \rho_{(2)_{I}}^{m*} + \dots + \rho_{(n)_{I}}^{m} \rho_{(n)_{I}}^{m*} \right)$$

Rotate each pair so  $\rho_{(i)} \parallel \hat{z}$ . Azimuthal symmetry  $\Rightarrow \rho_{(i)}{}^m_I = 0$  for  $m \neq 0$ .

We only need to compute 
$$\check{\rho}_{(i)_I} = \int_{-1}^{1} P_I(z) \rho_{(i)}(z) dz$$

### Fitting a 2-jet-like event with massive jets



### Fitting a 3-jet-like event with massive jets



## How can we account for pileup in $H_1$ jets?

Pileup adds to the energy density ... with a measureable, consistent shape

$$\rho(\hat{r}) = \rho_{\mathsf{hard}}(\hat{r}) + \rho_{\mathsf{pileup}}(\hat{r})$$

- $\rho_{\text{pileup}}$  measured from pileup's  $H_l$  (min-bias events).
- $f_{\rm PU}$  pileup energy fraction. Free parameter during fit.

We choose a simple pileup model (isotropic) for  $e^+e^-$  simulations.



# 3-jet-like event with extreme pileup ( $f_{PU} = 1/3$ )



# Conclusion

The high multiplicity at modern colliders gives  $H_i$  the ability to extract final-state correlations. Our initial study uses the  $H_i$  jet definition to extract the **jet-like structure (2-jet, 3-jet)**:

- Started with massless,  $\delta\text{-function jet model}$  good fit.
- Model improved by adding jet mass better fit.
  - Higher moments accessible
  - We can ask questions about jet shape
- Pileup contribution can be fit to isolate signal
  - The shape of the pileup energy density  $\rho$  can be measured in min-bias.
  - H<sub>1</sub> harnesses pileup correlations to make in situ measurement

What's next?

- Apply  $H_l$  to a proton collider physics.
- Expand  $H_I$  jet fit to identify jet substructure
  - Reconstruct top layer of showering.
  - Substructure is already visible at low /!

# THANK YOU!

