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@ The importance of Monte Carlo simulation
@ Simulation, integration, numerical experimentation
@ The beating heart of Monte Carlo

© Sampling from random distributions
@ The quantile function
e PRNG — U(0,1) can be too uniform

e Why we should use pgRand
@ Quasi-uniform sampling
@ Better samples; better integrals
@ The pgRand package



Simulation, integration, validation

Monte Carlo simulation: I

2
Electromagnetic Calorimeters - Wi
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Forward Calorimeters

Use randomness to solve ‘ L

End Cap Toroid

difficult problems.

Big non-linear systems require |

big simulations: &
@ LHC particle detectors
@ Cosmic evolution

@ Beam dynamics

Barrel Toroid Inner Detector Shielding

Monte Carlo integration beats
the curse of dimensionality:

@ Randomly find important regions

e Easily automated for arbitrary 7(x)

Quickly validate an analytic solution.
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Monte Carlo simulations need random numbers

\

RANDU: 3 consecutive values live in planes

To sample from f(x) ... IID.

Identically: Whole sample is true to f(x)
Independently: No correlations!
Distributed

IID is hard! Need a universal tool
[ID random bits (e.g. uint)
random bits — floating point

Step 1: Pseudo-random is better:
e Faster/cheaper on CPU (no 1/0 lag).
@ Repeatable from known sed.
@ When in doubt ... use MT19937.

Step 2: equally important! MT19937: The Mersenne twister
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The problem with step 2

Sampling from f(x) = exp(—x);

® std::exponential _distribution

1 — N
N = un|que Values; p = measured

Nexpected

O pgRand: :exponential
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© Sampling from random distributions
@ The quantile function
e PRNG — U(0,1) can be too uniform



Drawing from the exponential distribution

Radioactive metal with decay rate A. 1 B
How long till the next decay? 0.8 | ” o
Poisson statistics — Exp. distribution 06 | \ ./ F(t) ---- 1
04 / ]
The probability distribution function 0
PDF: f(t) = Aexp(—At) R T R N T
t
The cumulative distribution function
10!

t
CDF : F(t):/ f(£)dt' =1—e 1
0

The quantile function (u) (0 <u<1) 107!
1072

Q(u) = F~t = —log(1 — u)/A Y

Uniform sample: {U(0,1)} — Q@ — {f} i | o
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How to convert PRNG — U(0,1)?

Computers can't use K, only Q;

floating point numbers w/ precision P

exponent

=

1.010x 2! =5/2=25.
S——

mantissa (P=4)

U0,1) —» Q

If PRNG is uniform, so is u: 6

t

P
. float(Z(0, 27)) 1
2P 0.8 P -
Sample space is evenly distributed ... 0.6 I i
. 04t P=6 1
@ Only 2P — 1 values ... repetition

02t ]

@ The tail is sparsely populated oL e
@ Many tail values are unattainable 0 2 f’ 4 6
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e Why we should use pgRand
@ Quasi-uniform sampling
@ Better samples; better integrals
@ The pgRand package



Getting arbitrarily close to zero

Standard U(0,1) pgRand U(0,1)
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Fixing the exponential distribution

Sampling from f(x) = exp(—x);

® std::exponential _distribution

i N
N = unique values; p = measured

N, expected

O pgRand: :exponential
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Monte Carlo integration

50 T T
Monte Carlo integration (VEGAS) is a pRand
very common HEP tool: or standard -~ - |
= 30 7+ 9(27)
N ~—
1 f(x;) S0 DN
I(f)=— ! %/dxf(x)
N ; g(X,-) 10 p—~
ST AT
where g(x) is the PDF for random x;. N
What is the mean p of a Pareto Relative error to y + 1(2F)

distribution g(x) = x2 ?

* 1 1
,u:/ x2dx:/ —dx =
1 X 1 X

=103 pqRand —— 4
, 4| standard - - - - ' 'l
Why doesn't the standard method S A
diverge? The sample space is too finite! L0 Bt s s e s o o0
N
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pgRand for C4++ and Python

pgRand is herel https://github.com/keith-pedersen/pqRand

#include <cstdio> import pYqRand as pqr
#include "pqRand.hpp"
#include "distributions.hpp" rng = pqr.engine ()

dist = pqr.exponential(1l.)
using namespace pqRand;

int main () N =1 << 20
{ total = 0.
engine rng;
exponential dist(1.); for __ in range (0, N):

total += dist(rng);
size_t const N = size_t (1)<<20;
double sum = O.; print (total/N)

for(size_t i = 0; i < N; ++i) e C++ and Python
sum += dist(rng); .
@ Exponential, normal,

printf("%.16e\n", sum/N); log-normal, pareto, weibull,
¥ and uniform distributions.

Keith Pedersen (1IT) Better random samples with pgRand CAPP, IIT, Oct 2017 9 /10



Do subtle tail effects matter?

Rejection sampling needs a Rejection sampling

high-quality proposal distribution

p(@) —
o3 Mq(x) g

accepted samples o

0. | rejected samples

What does the future hold?

@ Monte Carlo simulations are - ;
growing: larger N, more non-linear. .| " fon
Are we sensitive to these effects? e s D
@ Who knows? Validation is hard!
. 50 —
The best parts give the best results. I T
40 L pqRand —— ]
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Thank you for your attention!
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Normal distribution

Indirect quantile function — Marsaglia polar method
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