pqRand: better random samples for the future of Monte Carlo simulation

Keith Pedersen (kpeders1@hawk.iit.edu)

Appearing in arXiv:1704.07949

CAPP meeting, Illinois Tech, 26 Oct 2017

Outline

- The importance of Monte Carlo simulation
 - Simulation, integration, numerical experimentation
 - The beating heart of Monte Carlo
- Sampling from random distributions
 - The quantile function
 - ullet PRNG o U(0,1) can be too uniform
- Why we should use pqRand
 - Quasi-uniform sampling
 - Better samples; better integrals
 - The pqRand package

Simulation, integration, validation

Monte Carlo simulation:

Use randomness to solve difficult problems.

Big non-linear systems require **big simulations**:

- LHC particle detectors
- Cosmic evolution
- Beam dynamics

Monte Carlo integration beats the curse of dimensionality:

- Randomly find important regions
- Easily automated for arbitrary f(x)

Quickly validate an analytic solution.

Monte Carlo simulations need random numbers

To sample from f(x) ... **IID**.

Identically: Whole sample is true to f(x) **Independently**: No correlations!

Distributed

IID is hard! Need a universal tool

- IID random bits (e.g. uint)
- $\mathbf{2}$ random bits \rightarrow floating point

Step 1: Pseudo-random is better:

- Faster/cheaper on CPU (no I/O lag).
- Repeatable from known sed.
- When in doubt ... use MT19937.

Step 2: equally important!

RANDU: 3 consecutive values live in planes

MT19937: The Mersenne twister

The problem with step 2

Sampling from $f(x) = \exp(-x)$; N = unique values; $p \equiv \frac{N_{\text{measured}}}{N_{\text{expected}}}$

• std::exponential_distribution

 \circ pqRand::exponential

Outline

- $oldsymbol{1}$ The importance of Monte Carlo simulatior
 - Simulation, integration, numerical experimentation
 - The beating heart of Monte Carlo
- Sampling from random distributions
 - The quantile function
 - ullet PRNG o U(0,1) can be too uniform
- Why we should use pqRand
 - Quasi-uniform sampling
 - Better samples; better integrals
 - The pqRand package

Drawing from the exponential distribution

Radioactive metal with decay rate λ . How long till the next decay?

Poisson statistics \rightarrow Exp. distribution

The probability distribution function

$$PDF: \quad f(t) = \lambda \exp(-\lambda t)$$

The cumulative distribution function

CDF:
$$F(t) = \int_0^t f(t') dt' = 1 - e^{-\lambda t}$$

The quantile function (u) (0 < u < 1)

$$Q(u) = F^{-1} = -\log(1-u)/\lambda$$

Uniform sample: $\{U(0,1)\} \rightarrow Q \rightarrow \{f\}$

How to convert PRNG $\rightarrow U(0,1)$?

Computers can't use \mathbb{R} , only \mathbb{Q} ; floating point numbers w/ precision P

$$\underbrace{1.010}_{\text{mantissa}} \times \underbrace{2^1}_{\text{P=4}} = 5/2 = 2.5.$$

If **PRNG** is uniform, so is *u*:

$$u = \frac{\mathsf{float}(\mathbb{Z}(0, 2^P))}{2^P}$$

Sample space is evenly distributed ...

- Only $2^P 1$ values . . . repetition
- The tail is sparsely populated
- Many tail values are unattainable

Outline

- oxdot The importance of Monte Carlo simulation
 - Simulation, integration, numerical experimentation
 - The beating heart of Monte Carlo
- Sampling from random distributions
 - The quantile function
 - ullet PRNG o U(0,1) can be too uniform
- Why we should use pqRand
 - Quasi-uniform sampling
 - Better samples; better integrals
 - The pqRand package

Getting arbitrarily close to zero

Need small u to fill tails!

U(0,1): Draw from \mathbb{R} , round to \mathbb{Q} .

 10^{-2}

1/2

Fixing the exponential distribution

Sampling from $f(x) = \exp(-x)$; N = unique values; $p \equiv \frac{N_{\text{measured}}}{N_{\text{expected}}}$

• std::exponential_distribution

o pqRand::exponential

Monte Carlo integration

Monte Carlo integration (VEGAS) is a very common HEP tool:

$$I(f) = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{g(x_i)} \approx \int dx \, f(x)$$

where g(x) is the PDF for random x_i .

What is the mean μ of a Pareto distribution $g(x) = x^{-2}$?

$$\mu = \int_1^\infty x \, \frac{1}{x^2} \, \mathrm{d}x = \int_1^\infty \frac{1}{x} \, \mathrm{d}x = \infty$$

Why doesn't the standard method diverge? The sample space is too finite!

Relative error to $\gamma + \psi(2^P)$

pqRand for C++ and Python

pqRand is here! https://github.com/keith-pedersen/pqRand

```
#include <cstdio>
#include "pqRand.hpp"
#include "distributions.hpp"
using namespace pqRand;
int main()
  engine rng;
  exponential dist(1.);
  size_t const N = size_t(1) << 20;
  double sum = 0.;
  for(size_t i = 0; i < N; ++i)
    sum += dist(rng);
  printf("%.16e\n", sum/N);
```

```
import pYqRand as pqr
rng = pqr.engine()
dist = pqr.exponential(1.)
N = 1 << 20
total = 0.
for __ in range(0, N):
   total += dist(rng);
print(total/N)
```

- C++ and Python
- Exponential, normal, log-normal, pareto, weibull, and uniform distributions.

Do subtle tail effects matter?

Rejection sampling needs a high-quality proposal distribution

What does the future hold?

 Monte Carlo simulations are growing: larger N, more non-linear.

Are we sensitive to these effects?

Who knows? Validation is hard!
 The best parts give the best results.

Rejection sampling p(x) = p(x) p(x) = p(

The end

Thank you for your attention!

Normal distribution

Indirect quantile function — Marsaglia polar method

