Keith Pedersen

Resumé

My doctoral research crafted me into a top-level problem solver and software developer. To understand a complex system theoretically, I often seek empirical clues by standing up small Monte Carlo simulations that probe specific effects in a controlled environment. This tool recently helped me develop a good approximation for state uncertainty that was *fast* enough to be embedded in a large optimization loop.

My first year at Raytheon has been a crash course in sensor fusion, data filtering, collaborative autonomy, optimization, and operational analysis. I have designed command and control algorithms that optimize collaborative sensing and have also developed the MODs framework — an attempt to standardize measures of effectiveness and performance (MOEs/MOPs) so that autonomy can use them as real-time decision aids.

Education

May 2018 Ph.D (Theoretical Physics), Illinois Institute of Technology, Chicago, IL.

June 2008 BA (Chemistry), Carthage College, Kenosha, WI.

Work experience

April 2019—Present Senior System Engineer II, Raytheon Intelligence & Space, El Segundo, CA.

Developed and extended collaborative autonomy algorithms via deterministic, non-heuristic objective functions, with applications in several important sensing domains. Developed the MODs framework to improve and standardize the MOE and MOP available to autonomy.

Feb 2017—April 2019 Statistics/Data Consultant, Validate Health LLC, Chicago, IL.

Developed PQRAND to fix a common flaw in random sampling schemes (arXiv:1704.07949). Used Cython to port the C++ library into a Python module with the same API.

Jul 2013-Aug 2018 Research Assistant, Illinois Institute of Technology, Chicago, IL.

Developed PowerJets, a framework to study correlated information at particle colliders. My C++/Python library uses a thread pool for maximum speed and "tiled" linear algebra to reduce memory overhead (maximizing use of the CPU cache by localizing access and downsizing intermediate results; see PowerSpectrum.hpp).

Technical expertise

- Multi-sensor fusion (Bayesian synthesis)
- Statistics/Linear Algebra (random sampling)
- Physics (Fourier analysis, LTI systems)
- Calculus (analytic and numerical)
- Estimation (Kalman/EKF/Gauss-Newton)
- Monte Carlo (custom, parallel)
- \circ Numerical stability (machine ϵ , cancellation)
- o Data analysis (histograms, models)

Language proficiency

- C++11 (STL) and Java 8 (Apache commons)
- The Wolfram Language / Mathematica
- Linux/GNU/UNIX/Bash/ssh

- o Python (Numpy, Scipy) and Cython
- CUDA, SIMD, auto-vectorized SSE
- LATEX and vector graphics

References (letters available upon request)

2020—Present Brad Hamilton, Principal Engineering Fellow, Raytheon Intelligence & Space.

Brad helped me mature the MODs framework into a robust, useful system.

2019—Present **Jeff Ridder**, Engineering Fellow, Raytheon Intelligence & Space.

Jeff and I developed several successful algorithms for collaborative autonomy.