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We conduct a free-fall experiment to measure the acceleration due to gravity g. We measure a
value of g = 9.865± 0.111 m/s2, which agrees quite well (+0.595 %) with the international standard
definition: g = 9.80665 m/s2 [1]. This result required careful analysis of systematic errors in the
data, to account for the small, unintentional downward angle of the projectile launcher.

NOTE TO STUDENTS

This lab report is intended to be a standalone docu-
ment. As such, it includes many features which I am not
expecting from students, like: an abstract, a preface, an
overly thorough introduction, sophisticated error analy-
sis, an unnecessary appendix, and beautiful typesetting
via LATEX. Nonetheless, this document is a good example
of what an ideal lab report looks like.

PREFACE

When children learn to walk, they will fall many times.
Luckily they are not very tall, so when they fall it is not
far, and there is no time to accelerate to high speed.
Young children also have the advantage of being un-
massive. When the ground arrests their fall, their paltry
inertia gives rise to a small impact force. Unharmed, they
pick themselves up and keep toddling.

But when adults fall, they fall hard. Ten years ago the
author slipped on mud while running. To catch himself
he straight-armed the ground. As the force was transmit-
ted at the elbow, his arm bones slammed together force-
fully enough to chip the tip of his radius bone. Surgery
was required, and range-of-motion was lost. His lesson?
Fall like a sack of potatoes.

This anecdote reminds us that gravity — like the sea
and the sun — is relentless and uncaring; it will smash
us at the first opportunity. But like the sea and the sun,
gravity is also the giver of life; it caused the earth to
form and keeps the atmosphere, and us, from floating off
into space. As both a creator and a destroyer, gravity
demands our respect. This is why we study it.

I. INTRODUCTION

One of gravity’s defining properties is somewhat
counter-intuitive; gravity, which acts proportional to
mass, accelerates a mouse and a man at the same rate.
This result is obtained by using Newton’s law of universal
gravitation to calculate the gravitational force F acting

∗ kpeders1@hawk.iit.edu

on an object of mass m at the surface of the earth (using
Newton’s gravitational constant G and the mass M and
radius R of the earth)[2]. We then use Newton’s 2nd law
to convert this force into an acceleration a

F =

2nd law︷︸︸︷
m
↑
a

inertial mass

=

universal gravitation︷ ︸︸ ︷
m
↑

(
GM

R2

)
gravitational mass

= mg . (1)

Note that both the gravitational force exerted on the ob-
ject, and the object’s inertia (resistance to motion), are
proportional to its mass. Canceling out Eq. 1’s com-
mon m (and bundling its constants into g, the standard
acceleration due to gravity), we find that

a = g . (2)

The earth’s gravity accelerates all objects equally.1

To measure g, we can observe a test object falling un-
der the influence of gravity. The apparatus at hand is
a spring-loaded launcher which fires a steel ball bearing
at 3–6 m/s. We define the y-axis to be orthogonal to
the floor and the x-axis to be along the floor, directly
underneath the ball’s flight path. Since g is effectively
constant,2 and choosing to ignore air resistance, we can
use the traditional equations of motion [2]. Our choice
of coordinate system gives ax = 0 and ay = −g, and we
are free to place the origin at the launch point so that

x = vx0 t , (4)

y = vy0 t−
g

2
t2 . (5)

1 In a normal setting, a feather and a bowling ball experience
different air resistance as they fall, and therefore accelerate at
different rates. In a vacuum chamber they fall in unison [3].

2 There is no time dependence in g, and its altitude dependence is
negligible on the scale of our experiment. We can prove this by
defining y = 0 at the earth’s radius and using a first-order series
expansion to find the value of g at different altitudes.

g(y) =
GM

(R + y)2
≈ g(1 − 2y/R) . (3)

This approximation is accurate provided that (2y/R) / 10−2.
The ball will fall about 1 meter, so (2∆y/R) ≈ 3 × 10−7. Thus,
we expect g to vary by about 0.3 ppm during the experiment,
an effect several orders of magnitude smaller than air resistance,
and thus completely negligible.
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The launcher’s elevation angle θ relative to the floor is
adjustable. Projecting the initial velocity into the x and
y directions, we obtain

vx0 = v0 cos θ , (6)

vy0 = v0 sin θ . (7)

To conduct a free-fall experiment, we orient the
launcher at zero elevation (θ = 0) so that vy0 = 0 and
vx0 = v0. Since the physics of the two axes are com-
pletely independent, the ball moves in the y-direction as
if it were simply dropped, allowing us to extract

g = −2y

t2
. (8)

The advantage of firing the ball from the launcher, in-
stead of simply dropping it, is that we do not have to
construct a dropping apparatus that instantaneously re-
leases the ball (and does so without any residual interac-
tions in the first few moments of the drop); the launcher
is already such a device.

The downside of this experimental setup is its reliance
on very accurately setting θ = 0. Any error while setting
up the launcher — either via a miscalibrated or impre-
cise measurement of θ — will manifest as a non-zero vy0,
which alters the time-of-flight (TOF) t. Näıvely using
Eq. 8 on such data will cause vy0 to infect the extracted g.
For example, if θ > 0, then it will take longer for the ball
to reach the ground than if the ball were dropped from
rest. This will be interpreted by Eq. 8 as a weaker g.
And since this effect scales with v0, the extracted g will
become even weaker as v0 increases.

This v0 dependence is actually a blessing; we can use
it to determine the actual θ of the launcher and correct
the g measurement. This is accomplished by rearranging
Eq. 5 into a linear model to fit the data(

2y

t2

)
= sin θ

↑
m

(
2v0
t

)
− g
↑
b

. (9)

The slope of the fit (m = sin θ) will tell us the unknown
launch angle and the intercept (b = −g) will give a much
more accurate measurement of g. Since we do not ac-
tually measure v0 (only vx0 = x/t), we should insert
v0 = vx0/ cos(θ) into Eq. 9 to give the final fit equation(

2y

t2

)
= tan θ

(
2x

t2

)
− g . (10)

II. EXPERIMENTAL METHODS

The spring launcher was securely fastened to the lab-
oratory table and adjusted to zero elevation (θ = 0) via
the launcher’s small, integral plumb bob and protractor.
To minimize parallax error when reading the angle from
the protractor, the author’s line of sight was kept orthog-
onal to the scale. Nonetheless, due to the small size of

the protractor, and the tiny weight of the plumb bob, its
precision was estimated to be ±1◦.

The launch point (marked with crosshairs near the
muzzle of the launcher) was used as the origin of the
coordinate system. A 1 lb plumb bob was used to locate
the x-origin — the point on the floor directly below the
launch point — which was marked with a pencil. A mea-
suring tape (mm precision) was used to record the height
of the launch point above the floor, which was translated
to the floor’s position: y = −107.25± 0.25 cm.

The time-of-flight measurement apparatus consisted
of: (i) a photo-gate broken by the ball immediately af-
ter launch, to start the clock and (ii) a sensor pad on
the floor which stopped the clock when struck by the
ball. The height of the sensor pad was measured to be
h = 1.75 ± 0.1 cm. The TOF system was attached to
the computer and automatically calibrated by the Pasco
Captsone DAQ software.

To measure the x-distance traveled by each ball, a
letter-sized piece of white printer paper was taped to the
front of the sensor pad. Before each launch, a piece of
carbon paper was placed on top of the white paper, to
create a small black mark when struck by the ball. Af-
ter each trial, the fresh mark was sequentially numbered.
The total distance x = xlarge + xsmall was composed of
xlarge, the distance from the x-origin to the edge of the
paper, and xsmall, the distance from the edge of the paper
to each black mark.

The launcher had three v0 settings, delineated by the
number of clicks heard (1, 2 or 3) while cocking the
plunger with the cocking rod (the click was caused by
the launch bar snapping into a restraining notch). The
ball was launched by using a lanyard to swiftly raise the
launch bar.

Before taking data for each v0 setting, a dry run was
conducted to find the approximate location where the
balls would land. Then the sensor was positioned so that
the white paper was aligned with the edge of one of the
floor tiles. This allowed the sensor to be reset after each
launch, since the ball’s impact occasionally knocked it
out of position.

Four trials were taken per v0 setting, and each TOF
was recorded. Before moving to the next v0, the mea-
suring tape was used to record xlarge. Because there was
only one experimenter to hold the tape, the uncertainty
of xlarge was ±1 cm. After completing all trials, the white
paper was removed from the sensor pad and taken to the
table to measure xsmall with a meter stick (mm preci-
sion). The edge (zero) of the meter stick was worn, so
all xsmall readings were taken by using the 10 cm mark
as the zero. The absolute reading was recorded, with the
10 cm offset subtracted during analysis. However, the
imprecision of xlarge spoils the extra precision of xsmall.

Each grouping of four trials exhibited a spread in the
z-direction (ẑ = x̂× ŷ) of half-width δz = ∼1.5 cm. The
relative error from ignoring z when calculating the total

flight distance is ε ≈ x√
x2+δz2

−1 ≈ −δz22x2 (using a second-

order series approximation). The slowest v0 exhibited
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x ≈ 1.5 m, which gives ε = O(−10−6). This error is
several orders of magnitude smaller than the error made
by ignoring air resistance, so that z is safe to ignore.

III. RESULTS AND DISCUSSION

Each trial is specified by the ball’s TOF t and its im-
pact position (x, y) on the sensor pad (although every
trial uses the same y = −1.055 ± 0.003 m). Assuming
that θ = 0, the best strategy to mitigate random errors
is to average x and t before calculating v0 and g.

x̄ (m) t̄ (s) v0 (m/s) g (m/s2)

1.460 ± 0.010 0.4562 ± 4.0E − 4 3.200 ± 0.022 10.14 ± 0.03

1.901 ± 0.014 0.4556 ± 3.0E − 3 4.170 ± 0.028 10.16 ± 0.03

2.473 ± 0.013 0.4523 ± 1.4E − 3 5.468 ± 0.026 10.31 ± 0.03

Weighted average g: 10.20 ± 0.02 m/s2

TABLE I. Results from averaging data, assuming θ = 0. Eq. 6
is used to calculate v0 and Eq. 5 to calculate g. Errors in t̄ are
estimated from the statistical error (unbiased variance σ2

t ).
The x̄ error sums the statistical and systematic errors in
quadrature (xlarge has a measurement error of ±1 cm). Er-
rors in the results are estimated by propagating errors using
variance and covariance [4] (and are dominated by the errors
in x and y). The weighted average ḡ uses weights wi = σ−2

i ,

with σḡ =
√

1/
∑

i wi [4].

Table I depicts the initial results. The measurement
of g = 10.20± 0.02 m/s2 is 4.01% larger than the inter-
ational standard definition g = 9.80665 m/s2 (which is
defined to have its exact value, with no uncertainty)[1].
Although local variations in g are expected (e.g. local al-
titude, local shape and mass distribution of the Earth),
these should be much smaller than 4% (otherwise one
could lose 10 lbs by simply moving to a new city). Fur-
thermore, the uncertainty in our measurement of g is 20
times smaller than its difference from the standard value;
the difference is statistically significant.

The initial measurement of g is significantly high,
which implies that the launcher may have been angled
slightly downward. A more complete analysis allowing
θ 6= 0 is shown in Fig. 1, which fits Eq. 10’s linear model
to the data. Raw data is fit because x and t are cor-
related (as they should be, dx/dt = vx0). A limitation
in using raw data is the inability to assign a meaningful
uncertainty to the TOF, since variations in arrival time
could arise either from imprecision in the TOF apparatus
or from variations in v0. As such, we do not utilize error
bars during the fit, giving every data point equal weight.

The best fit extracts g = 9.865 ± 0.111 m/s2,
which is only +0.59% larger than the international stan-
dard. In spite of our best efforts to set the launcher
to zero elevation, the fit indicates that it was set to
θ = −0.01805± 0.0058 (or −1.034◦ ± 0.330◦). Account-

ing for this error permits the order of magnitude improve-
ment in the accuracy of our g measurement.

Ironically, we pay for 10 times better accuracy with
10 times worse relative precision. This is due to the rel-
atively low R2 of the fit, which stems primarily from
the vertical spread around each v0 setting. For exam-
ple, if the main outlier is removed, the fit tightens to
R2 = 0.77. However, it was not removed because it did
not pass Chauvenet’s criteria for removal [4] (since its
n = 0.62 > 0.5). Note that the apparent intensity of the
vertical spread, versus the horizontal spread, is mostly
due to the scale of the axes (the vertical axis is zoomed
in about 10 times more).

A possible explanation for the vertical spread can be
seen by drawing the error band of the fitted launch angle
in Fig. 1. Given this visual aid, the vertical spread sug-
gests that individual trials launch at slightly different an-
gles, which could be caused by vibrations during launch
perturbing the launch angle (especially at large v0). In
fact, a vibration of 0.33◦ seems quite reasonable, given
that the launcher is neither very heavy nor incredibly
secure (even after tightly screwing the half dozen knobs
and wingnuts, there was still a moderate amount of play
in the test rig).

IV. CONCLUSION

By launching a ball bearing nearly parallel to the
ground, we conduct a free-fall experiment and measure an
acceleration due to gravity of g = 9.865± 0.111 m/s2, in
close agreement (+0.592 %) with the international stan-
dard definition of g = 9.80665 m/s2. This result ac-
counts for the dominant systematic error in our exper-
iment; even though we though we set the launcher to
zero elevation, it was likely at a slight downward angle of
θ = −1.034◦. This g measurement does not account for
air resistance, the sub-dominant systematic error.

2
y
/
t2
(m

/s
2
)

2x/t2 (m/s2)

yfit(xfit) = −0.01805xfit − 9.865

R2 = 0.496
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FIG. 1. Raw data fit to Eq. 10 by minimizing the χ2. Each
data point is given equal weight, so that errors in the fit
are estimated from the covariance matrix of the final fit (the
“asymptotic standard error”). Dot-dashed lines depicting the
error band of the slope flank the best fit (solid).
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Appendix A: The optimal firing angle

Note: My experiment did not test the optimal firing
angle. This appendix is for their benefit of my student’s.

Launching from the origin (with a fixed v0) at some
target at height y, what is the optimal launch angle θopt
(the one that maximizes our distance from the target)?

We first solve the projectile’s equation of motion

y = v0 sin(θ)t− g

2
t2 (A1)

for the time to reach the target

t(θ) =
v0 sin θ

g

(
1±

√
1− 2gy

v20 sin2 θ

)
. (A2)

These t solutions are real whenever the parabolic path
actually passes through y (i.e. 2gy < v20 sin2 θ). However,
just because t is real does not mean t is in the future
(t > 0), as required by the definition of the problem.
Specifically, if θ < 0, only the 	 solution can be in the
future (but doesn’t have to be, if y > 0). On the other
hand, if θ > 0, both solutions (if real) must be in the
future. This means that the ⊕ time must correspond to
the farthest distance.

By calculating the distance to the target

D(θ) = v0 cos(θ) t(θ) , (A3)

we can find the optimal angle by solving

dD(θ)

dθ
= 0 . (A4)

However, while this calculation gives the correct answer,
it is a nightmare to work out. There is a better way.

Imagine that the target is very close (D is small) and
v0 is more than sufficient to hit it. There are clearly two
angles we can use; a high, lobbing shot (like a mortar)
or a very low, direct shot (like a rifle). As we move the
target further away, there continue to be two angles, but
they get closer to each other. When we eventually reach
the optimal angle — the farthest distance D that can
still hit the target — the two angles converge. Now only
one angle can do the job. Hence, if we can solve for the
two angles using the quadratic formula, then the optimal

angle corresponds to the solution where the root term
vanishes, and there is only one solution.

If we assume that we know D, we can solve for the
time to hit the target

t =
D

v0 cos θ
. (A5)

Plugging this t into the equations of motion (and using
cos−2 θ = 1 + tan2 θ), we find

y = D tan θ − gD2

2v20
(1 + tan2 θ) . (A6)

Now defining w ≡ tan θ and α ≡ (gD2)/(2v20), we obtain
a rather simple quadratic equation

αw2 −Dw + (y + α) , (A7)

and can immediately find its solutions

w =
D

2α

(
1±

√
1− 4α(y + α)

D2

)
. (A8)

The optimal angle occurs when the root term is null,
so we can solve for the D which sends the root term to
zero. After some algebra we find

D =
v0
g

√
v20 − 2gy . (A9)

We have just phrased D in terms of the other degrees of
freedom; it is no longer an assumption. Plugging this D
into Eq. A6 (and after some more algebra) we obtain

θopt = arctan

(
v0√

v20 − 2gy

)
. (A10)

As a sanity check, we can try y = 0; as expected, we
obtain θ = π/4 (45◦).

There is an interesting aspect to this solution. Using
conservation of energy [2], we can show that

1

2
mv20 =

1

2
mv2impact +mgy , (A11)

which gives

vimpact =
√
v20 − 2gy . (A12)

Thus, we can rephrase the optimal angle in terms of the
initial and impact velocities

θopt = arctan

(
v0

vimpact

)
. (A13)

Of course, this result is not very useful for real-world
projectiles (like artillery shells) because it leaves out im-
portant effects like wind and air resistance. We ignore
these in introductory mechanics because simply adding
air resistance requires non-linear differential equations.

https://books.google.com/books?id=3F4wtwAACAAJ
https://books.google.com/books?id=3F4wtwAACAAJ
https://youtu.be/E43-CfukEgs?t=2m38s

	The acceleration due to gravity
	Abstract
	Note to students
	Preface
	Introduction
	Experimental methods
	Results and discussion
	Conclusion
	References
	The optimal firing angle


