Flavor tagging TeV jets for BSM

Keith Pedersen

(kpeders1@hawk.iit.edu)

In collaboration with Zack Sullivan Appearing in arXiv:1509.07551 and arXiv:1511.xxxxx

Outline

Introduction

- Searching for BSM
- Rise of the light jets

2 The μ_x boosted b tag

- Basics of b tagging
- A new b tag from first principles
- μ_{x} reconstruction
- Tagging efficiencies

3 Finding a leptophobic Z'

- A bump hunt
- Discovery potential

4 Conclusions

Prime candidates for BSM physics

Many extensions of the Standard Model predict heavy, narrow particles which couple via a **vector current** ... the W' and Z'

- Sequential Standard Model
- broken ${\rm SU}(2)_L imes {\rm SU}(2)_R$
- GUT models
- Kaluza-Klein excitations from extra dimensions
- non-commuting extended technicolor
- and many more ...

The "golden channel" is the obvious place to look...

• There are no $Z' \rightarrow l^+ l^-$ with SM-like coupling below 2.9 TeV (ATLAS/CMS, $\sqrt{s} = 8$ TeV)

But what if the new physics is afraid of leptons?

• Leptophobic = more challenging = more fun

Leptophobic bosons

- To invent a model that doesn't couple to leptons can be complicated ...
 - Topcolor-assisted technicolor Z'
- or more straightforward ...
 - Right-handed W'
- Regardless, leptophobic means *jets*, and the dreaded QCD background.
 - We must flavor tag the jets!

Leptophobic bosons

- To invent a model that doesn't couple to leptons can be complicated ...
 - Topcolor-assisted technicolor Z'
- or more straightforward ...
 - Right-handed W'
- Regardless, leptophobic means *jets*, and the dreaded QCD background.
 - We must flavor tag the jets!
- $Z' \rightarrow t\bar{t}$ can look for bW^+_{leptonic} recoiling against $\bar{b}W^-_{\text{hadronic}}$... must tag $2 \times b$ jets
 - No top-color Z' below 1.8 TeV
- $W' \rightarrow tb \dots$ must tag 2 × b jets • No $W'_{\rm B}$ below 1.9 TeV
- Why are these leptophobic limits ~40% lower than the dilepton limit (~3 TeV)?

Rise of the light jets

- Probability to tag light flavors rises dramatically for boosted jets!
 - Light jet = no b or c hadrons; experiments can't differentiate b-initiated jets and $g \rightarrow b\bar{b}$ jets.
- No complementary tags to cross-check performance as $p_T o \mathcal{O}({
 m TeV})$
 - Huge (40%) systematic uncertainties in tagging efficiency can dominate experimental results/exclusions.

Keith Pedersen (Illinois Tech)

We need a better, boosted b tag!

It must ...

- Rejects light jets $(rac{\epsilon_b}{\epsilon_{ ext{light}}} \gtrsim \mathcal{O}(10^2))$
- 2 Robust performance for jet $p_T > 300$ GeV
 - Permits a cross-check with existing *b* tags, driving down the uncertainty for **both** tags (one hand washes the other)

We can validate the new tag on a challenging signal, like a leptophobic $Z' \rightarrow b\bar{b}$ above 2 TeV.

Outline

- Searching for BSM
- Rise of the light jets

2 The μ_x boosted *b* tag

- Basics of *b* tagging
- A new b tag from first principles
- μ_{x} reconstruction
- Tagging efficiencies

3 Finding a leptophobic Z'

- A bump hunt
- Discovery potential

4 Conclusions

Boosted *b* tag complications

- *b* tags at ATLAS and CMS use a jet's tracks to find a SV.
 - Good for $p_T \lesssim 300$ GeV; doesn't tag many **charm**/**light** jets.

- *b* tags at ATLAS and CMS use a jet's tracks to find a SV.
 - Good for $p_T \lesssim 300$ GeV; doesn't tag many **charm**/**light** jets.
- Fake rate = ε_{light}. Dramatic increase as jet p_T → O(TeV).
- Fundamental limitations.
 - Collimated tracks
 - ... dense environment.
 - Higher p_T tracks bend less ... harder to constrain.
- High-p_T gluons split more often (g → bb) ... real b jets initiated by light partons.

Maintaining 50% b jet efficiency

A muon-based boosted b tag

- A boosted b tag was proposed by Duffty and Sullivan in PRD90(2014)015031
 - Muon ($p_T \ge 20$ GeV) within a cone of $\Delta R = 0.1$ around jet's centroid.
- Doesn't depend on the muon's p_T (after initial cut), which is harder to measure as $p_T \rightarrow \text{TeV}$.

Туре	100 GeV	400 GeV	1000 GeV
Ь	4.8%	11.8%	15.0%
с	2.1%	5.5%	7.5%
light	0.1%	0.4%	0.6%

A muon-based boosted b tag

- A boosted b tag was proposed by Duffty and Sullivan in PRD90(2014)015031
 - Muon ($p_T \ge 20$ GeV) within a cone of $\Delta R = 0.1$ around jet's centroid.
- Doesn't depend on the muon's p_T (after initial cut), which is harder to measure as $p_T \rightarrow \text{TeV}$.
- Heavy jet efficiencies plateau at 1 TeV, but $\epsilon_{\rm light}$ keeps rising.
- And a jet's centroid is **coarse** (QCD radiation, UE, pileup ...).
 - We can do better by studying boosted *b* tagging in the context of jet substructure.

Туре	100 GeV	400 GeV	1000 GeV
Ь	4.8%	11.8%	15.0%
с	2.1%	5.5%	7.5%
light	0.1%	0.4%	0.6%

Keith Pedersen (Illinois Tech)

CTEQ, Nov 7 2015 6 / 22

The subjet of semi-muonic *B* meson decay

- CM: The muon is emitted with speed $\beta_{\mu,cm}$ at angle θ_{cm} .
- Lab: Muon is detected at angle θ_{lab} w.r.t. the centroid of the *decay subjet* (boosted by γ_B).

$$m{
ho}_{
m subjet} = m{
ho}_{\mu} + m{
ho}_{
u_{\mu}} + m{
ho}_{
m core}$$

(1)

The subjet of semi-muonic *B* meson decay

- CM: The muon is emitted with speed $\beta_{\mu,cm}$ at angle θ_{cm} .
- Lab: Muon is detected at angle θ_{lab} w.r.t. the centroid of the *decay subjet* (boosted by γ_B).

$$m{
ho}_{
m subjet} = m{
ho}_{\mu} + m{
ho}_{
u_{\mu}} + m{
ho}_{
m core}$$

• Defining
$$\kappa \equiv \beta_{\rm B}/\beta_{\mu,{\rm cm}}$$
,
 $x \equiv \gamma_B \tan(\theta_{\rm lab}) = rac{\sin(\theta_{\rm cm})}{\kappa + \cos(\theta_{\rm cm})}$ (2)

$$\frac{x \approx \tan(\theta_{\rm cm}/2) \quad (\text{when } \kappa \approx 1)}{\frac{dN}{dx} = \frac{2x}{(x^2 + 1)^2} \,\mathcal{K}(x, \kappa) \quad (\text{when } \kappa \geq 1)$$
(3)

Theoretical lab frame muon distributions

• We are interested in a specific boosted subjets ...

- boosted b jets ($p_T \ge 300 \text{ GeV} \implies \gamma_B \gtrsim 60$).
- *b* hadron decays $(\gamma_{\mu, cm} \leq \frac{m_B}{2 m_{\mu}} \lesssim 25)$
- What does the lab dN/dx look like for these subjets?

K(x, κ) restricts muons to boost cone boundary (x ≤ 1/√κ² − 1).
Once γ_{μ,cm} ≥ 3, lab muons approach a the universal boosted shape.

x marks the heavy-flavor tag

Using the universal boosted shape, the lab frame cone $0 \le x \le x_{\rho}$ captures at least a fraction ρ of muons from *b* hadron decay, where

$$x_{\rho} = \sqrt{\frac{\rho}{1-\rho}}.$$
 (4)

- K(x, κ) corrections shift muons to smaller x
 - x_ρ captures at least a fraction ρ.

x marks the heavy-flavor tag

Using the universal boosted shape, the lab frame cone $0 \le x \le x_{\rho}$ captures at least a fraction ρ of muons from *b* hadron decay, where

$$x_{\rho} = \sqrt{\frac{\rho}{1-\rho}}.$$
(4)

- K(x, κ) corrections shift muons to smaller x
 - x_ρ captures at least a fraction ρ.

•
$$x_{90\%} = 3$$
.

 x_{max}: a cut used to accept/reject muons consistent with boosted decay inside a jet

•
$$x_{\rm max} = x_{90\%} = 3$$

The μ_{x} boosted *b* tag

Measuring x requires reconstructing the muonic subjet

$$p_{\mathrm{subjet}} = p_{\mu} + p_{\nu_{\mu}} + p_{\mathrm{core}}$$
 (1.1)

- $x \leq 3$ only indicates the muon is consistent with a *boosted* decay.
- It's heavy-flavor origin can be confirmed via a complementary measurement ... it should be carrying a *large fraction* of its jet's momentum.

$$x \equiv \gamma_B \tan(\theta_{\text{lab}}) \le 3$$
 $f_{\text{subjet}} \equiv \frac{p_{T, \text{subjet}}}{p_{T, \text{jet}}} \ge 0.5$

But, half the muons in b jets come from c hadrons! Is γ_B a valid observable?

The μ_{x} boosted *b* tag

Measuring x requires reconstructing the muonic subjet

$$p_{\mathrm{subjet}} = p_{\mu} + p_{\nu_{\mu}} + p_{\mathrm{core}}$$
 (1.1)

- $x \leq 3$ only indicates the muon is consistent with a *boosted* decay.
- It's heavy-flavor origin can be confirmed via a complementary measurement ... it should be carrying a *large fraction* of its jet's momentum.

$$x \equiv \gamma_{
m subjet} \, ext{tan}(heta_{
m lab}) \leq 3 \qquad \qquad f_{
m subjet} \equiv rac{
ho_{ au,
m subjet}}{
ho_{ au,
m jet}} \geq 0.5$$

But, half the muons in b jets come from c hadrons! Is γ_B a valid observable?

```
No ... we can only observe \gamma_{\text{subjet}}.
```

Anti- k_T jets are clustered with R = 0.4. Allowing muons to participate lets *hard muons* seed jet formation.

 $p_{
m subjet} = p_{\mu} + p_{
u_{\mu}} + p_{
m core}$

- Taggable muons must pass a quality cut ($p_T \ge 10 \text{ GeV}$).
- The core (the hadronic remnants of the semi-leptonic decay).
 - Re-cluster jet using R = 0.04 to localize core (3 × 3 grid)
 - $\gamma_{\rm subjet}$ needs mass of core very poorly measured. Core mass is constrained to *best guess* (e.g. $m_D \approx 2$ GeV).
 - The "correct" core brings $\sqrt{p_{\rm subjet}^2}$ closest to $m_B \approx 5.3$ GeV.
- Subjet's neutrino:
 - System is under-determined. Simplest estimate: add muon a second time to simulate neutrino (p_{ν_μ} = p_μ).

Understanding what x is doing

Given $p_{
u_{\mu}} = p_{\mu}$, we can imagine reconstructing an arbitrary subjet:

$$p_{
m subjet} = 2p_{\mu} + p_{
m core}$$

What x will we measure? Let's express it in terms of direct observables.

$$\gamma_{\rm core} \quad \lambda = \frac{2E_{\mu}}{E_{\rm core}} \quad \boldsymbol{\xi} \text{ (the angle between muon and core)}$$

If $\beta \rightarrow 1$ for both the muon and the core,

$$x(\boldsymbol{\xi}) \approx \underbrace{\gamma_{\text{core}} \frac{1+\lambda}{\sqrt{1+2\lambda \gamma_{\text{core}}^2 (1-\cos(\boldsymbol{\xi}))}}}_{\gamma_{\text{subjet}}} \underbrace{\frac{\sin(\boldsymbol{\xi})}{\cos(\boldsymbol{\xi})+\lambda}}_{\tan(\theta_{\text{lab}})}$$
(5)
Angle where $\boldsymbol{\xi}$ dominates m_{subjet} $\boldsymbol{\xi} < \boldsymbol{\xi}_m$ $\boldsymbol{\xi} \gtrsim \boldsymbol{\xi}_m$

$$\xi_m = \sqrt{\frac{m_{\rm core}^2}{2E_{\rm core} E_{\mu}}} \qquad \qquad x(\boldsymbol{\xi}) \approx \gamma_{\rm core} \cdot \boldsymbol{\xi} \qquad x \approx 1/\sqrt{\lambda}$$

Understanding what x is doing

Given $p_{
u_{\mu}} = p_{\mu}$, we can imagine reconstructing an arbitrary subjet:

$$p_{
m subjet} = 2p_{\mu} + p_{
m core}$$

What x will we measure? Let's express it in terms of direct observables.

$$\gamma_{\rm core} \quad \lambda = \frac{2E_{\mu}}{E_{\rm core}} \quad \xi \text{ (the angle between muon and core)}$$

If $\beta \rightarrow 1$ for both the muon and the core,

$$x(\xi) \approx \underbrace{\gamma_{\text{core}} \frac{1+\lambda}{\sqrt{1+2\lambda \gamma_{\text{core}}^2 (1-\cos(\xi))}}}_{\gamma_{\text{subjet}}} \underbrace{\frac{\sin(\xi)}{\cos(\xi)+\lambda}}_{\tan(\theta_{\text{lab}})} \qquad (5)$$
where ξ dominates m_{subjet}

$$\frac{\xi < \xi_m}{\xi_m = \sqrt{\frac{m_{\text{core}}^2}{2E_{\text{core}}E_{\mu}}}} \qquad \frac{\xi < \xi_m}{x(\xi) \approx \gamma_{\text{core}} \cdot \xi} \qquad x \approx 1/\sqrt{\lambda}$$

Angle

Understanding what x is doing

Given $p_{
u_{\mu}} = p_{\mu}$, we can imagine reconstructing an arbitrary subjet:

$$p_{
m subjet} = 2p_{\mu} + p_{
m core}$$

What x will we measure? Let's express it in terms of direct observables.

$$\gamma_{\rm core} \quad \lambda = \frac{2E_{\mu}}{E_{\rm core}} \quad \xi \text{ (the angle between muon and core)}$$

If $\beta \rightarrow 1$ for both the muon and the core,

$$x(\boldsymbol{\xi}) \approx \underbrace{\gamma_{\text{core}} \frac{1+\lambda}{\sqrt{1+2\lambda \gamma_{\text{core}}^2(1-\cos(\boldsymbol{\xi}))}}}_{\gamma_{\text{subjet}}} \underbrace{\frac{\sin(\boldsymbol{\xi})}{\cos(\boldsymbol{\xi})+\lambda}}_{\tan(\theta_{\text{lab}})}$$
(5)

Angle where
$$\xi$$
 dominates m_{subjet} $\xi < \xi_m$ $\xi \gtrsim \xi_m$ $\xi_m = \sqrt{\frac{m_{core}^2}{2E_{core} E_{\mu}}}$ $x(\xi) \approx \gamma_{core} \cdot \xi$ $x \approx 1/\sqrt{\lambda}$

$\mu_{\rm x}$ is a dynamic angular cut

A poorly reconstructed m_{subjet} is inevitable; a large m_{subjet} is inconsistent with heavy-hadron decay. So we implement a ceiling

Subjet with a hard muon ($\gamma_{\rm core} = 250, \, \lambda = 1/7)$

Keith Pedersen (Illinois Tech)

Tagging Efficiency (Jet p_T **)**

- Efficiency to tag jets at $\sqrt{s} = 13$ TeV.
- Boosted kinematics turn on at 300 GeV.
- Light jets classified by hadronic origin of taggable muon (normally, light-heavy is included in bottom/charm).
- Pileup helps (a bit)
 - Solid: no pileup
 - Dotted: μ = 40

Tagging Efficiency ($\eta_{\rm jet}$)

- Sum over all jets with $p_T > 300$ GeV.
- Signal efficiencies
 - \sim 14% of *b*-jets
 - \sim 6.5% of *c*-jets
- Light jet fake rate
 - Light-light $\mathcal{O}(0.1\%)$
 - All light $\mathcal{O}(0.5\%)$
- η dependence of heavy jets driven by muon system
 - Endcap ($|\eta| > 1$).
 - ATLAS detector services crack (η = 0)

The proof is in the pudding

Outline

- Searching for BSM
- Rise of the light jets

2) The μ_{x} boosted b tag

- Basics of *b* tagging
- A new b tag from first principles
- μ_{χ} reconstruction
- Tagging efficiencies

3 Finding a leptophobic Z'

- A bump hunt
- Discovery potential

Conclusions

A leptophobic Z'

- One of the simplest BSM models is an additional U(1)' symmetry, mediated by a neutral heavy boson (Z').
- Dobrescu and Yu [1306.2629, 1506.04435] outlined a simple, renormalizable, leptophobic Z^\prime_B
 - Only SM quarks are charged (suggesting baryon number B association).
 - Coupling to quarks is flavor independent,

$$\mathscr{L} = \frac{g_B}{6} Z'_{B\mu} \bar{q} \gamma^{\mu} q + \dots$$
(9)

• Narrow width:

$$\Gamma_{Z'}/M_{Z'} \approx \frac{1}{6} \alpha_B \left(1 + \frac{\alpha_S}{\pi} \right) \approx 1-5\%$$
(10)

• Model needs vector-like fermions (anomalons); assume they're "kinematically inaccessible".

 $\texttt{MadGraph5} \; (\texttt{w} / \; \texttt{CT14llo}) \rightarrow \texttt{Pythia} \; \texttt{8} \rightarrow \texttt{Delphes} \; \texttt{3} \; (\texttt{w} / \; \texttt{FastJet} \; \texttt{3})$

- Generate MLM matched Z'_B samples for a variety of $M_{Z'_B}$, $pp \rightarrow Z'_B \rightarrow b\bar{b}/c\bar{c}(+j).$
- QCD dominates background: $pp
 ightarrow b ar{b} / c ar{c} / j ar{j} (+j)$, $jq_h
 ightarrow jq_h (+j)$
- Look for signal excess in $d\sigma/dM_{jj}$ of width $[0.85, 1.25] \times M_{Z'}$ in 2-tag and 1-tag inclusive classes.
- We developed a custom DELPHES module (HighPtBTagger) to implement μ_x tagging, available on GitHub:

https://github.com/keith-pedersen/delphes/tree/ HighPtBTagger_devel

2-tag discovery $(M_{Z'} = 2.5 \text{ TeV}, g_B = 1.9)$

Keith Pedersen (Illinois Tech)

Flavor tagging TeV jets

CTEQ, Nov 7 2015

1-tag discovery ($M_{Z'} = 2.5$ TeV, $g_{B} = 1.3$)

Keith Pedersen (Illinois Tech)

Flavor tagging TeV jets

CTEQ, Nov 7 2015

Conclusions

- μ_x tags heavy jets at the TeV scale.
 - **b** jet: $\sim 14\%$
 - light-light: ~0.14%
- Flat *p*_T/η_{jet} response & minimal pileup sensitivity.
- μ_x tagging offers a significant improvement for leptophobic Z' searches.

THANK YOU!

Backup Slides

- 20% of *b* jets have $N_{muon} \ge 1$
- Electrons in jets are hard to identify; luckily someone ordered the *muon chamber!*
- Previous studies have investigated p^{rel}_T: muon momentum transverse to the *centroid* of its jet.

$p_T^{\rm rel}$ muon tagging

- 20% of b jets have $N_{muon} \geq 1$
- Electrons in jets are hard to identify; luckily someone ordered the *muon chamber!*
- Previous studies have investigated p^{rel}: muon momentum transverse to the *centroid* of its jet.

- *b* hadrons \rightarrow large mass, hard muons \rightarrow higher p_T^{rel} .
 - $\epsilon_b = \mathcal{O}(10\%)$, light jet fake rate $= \mathcal{O}(0.3\%)$.
- p_T^{rel} stops working when jet p_T exceeds 140 GeV.
 - Is this a problem of definition?

- Heavy quark $(m \gtrsim \Lambda_{QCD})$ decay functions peak near z = 1 (versus z = 0 for light partons).
 - Heavy quarks spawn heavy hadrons carrying a large fraction of \vec{p}_{jet} .

- Heavy quark $(m \gtrsim \Lambda_{\rm QCD})$ decay functions peak near z = 1 (versus z = 0 for light partons).
 - Heavy quarks spawn heavy hadrons carrying a large fraction of $\vec{p}_{\rm jet}$.
- b/c hadrons decay at a secondary vertex (SV)...
 - Far enough from the primary vertex to be resolved
 - Close enough to rule out other particles (e.g. K_S^0)

- Heavy quark $(m \gtrsim \Lambda_{\rm QCD})$ decay functions peak near z = 1 (versus z = 0 for light partons).
 - $\bullet\,$ Heavy quarks spawn heavy hadrons carrying a large fraction of $\vec{p}_{\rm jet}.$
- b/c hadrons decay at a secondary vertex (SV)...
 - Far enough from the primary vertex to be resolved
 - Close enough to rule out other particles (e.g. K_S^0)

b/c hadrons have a modest rate of semi-leptonic decay (l ∈ {e, μ}):

- $\mathcal{B}(b
 ightarrow l
 u_l X) pprox 11\%$
- $\mathcal{B}(c \to l
 u_l X) pprox 10\%$ (thus 20% of *b* jets have $N_{muon} \ge 1$)

- Heavy quark $(m \gtrsim \Lambda_{\rm QCD})$ decay functions peak near z = 1 (versus z = 0 for light partons).
 - $\bullet\,$ Heavy quarks spawn heavy hadrons carrying a large fraction of $\vec{p}_{\rm jet}.$
- b/c hadrons decay at a secondary vertex (SV)...
 - Far enough from the primary vertex to be resolved
 - Close enough to rule out other particles (e.g. K_S^0)

b/c hadrons have a modest rate of semi-leptonic decay (l ∈ {e, μ}):

- $\mathcal{B}(b
 ightarrow l
 u_l X) pprox 11\%$
- $\mathcal{B}(c
 ightarrow l
 u_l X) pprox$ 10% (thus 20% of *b* jets have $N_{muon} \ge 1$)

 $b \text{ hadrons} \rightarrow c \text{ hadrons, so generally } ...$ $heavy-flavor tags <math>\rightarrow b \text{ tags}$

The direction of the core is extremely important!

- Tracks provide the best angular information, but ...
 - Accurately tracking boosted jet constituents in a *fast detector* simulator is not possible; we only track "standalone" muons.
 - Jets are clustered from Cal towers and muons.
- **Trimming:** Before reclustering, discard Cal towers with low jet p_T fraction (we choose $f_{\text{tower}}^{\min} = 0.05$). This reduces the core's sensitivity to *pileup*, *UE*, soft *QCD*, etc.

The direction of the core is extremely important!

- Tracks provide the best angular information, but ...
 - Accurately tracking boosted jet constituents in a *fast detector* simulator is not possible; we only track "standalone" muons.
 - Jets are clustered from Cal towers and muons.
- **Trimming:** Before reclustering, discard Cal towers with low jet p_T fraction (we choose $f_{\text{tower}}^{\min} = 0.05$). This reduces the core's sensitivity to *pileup*, *UE*, soft *QCD*, etc.
- **ECal pointing:** Use the segmentation of the ECal to orient the combined (ECal+HCal) tower. This creates a *minimal angular resolution* independent of track reconstruction efficiencies.
 - We use the dimensions of ATLAS ECal L2: $(\Delta r \phi \times \Delta \eta = 0.025 \times 0.025)$
 - Also ran coarser (0.05 × 0.05); no degradation of heavy jet efficiency, the light jet fake rate is 20% larger at jet p_T = 600 GeV, but no enhancement in fake rate at p_T = 2 TeV.

Moving Forward

 A heavy Higgs (from quark fusion) produces a final state rich in bottom quarks (2× bottom, 2× top):

 $pp
ightarrow ar{t}ar{b}H^+
ightarrow ar{t}ar{b}tb$

$$pp \rightarrow b\bar{b}H/A \rightarrow b\bar{b}t\bar{t} \text{ (or } b\bar{b}\tau^+\tau^-)$$

- The discovery potential of these channels (with emphasis the "wedge" region") was recently investigated by Hajer et al.
- Based on personal communication, we believe their b tagging efficiencies and fake rates were over-optimistic.
 - How well can μ_x tagging do?

$$\frac{dN}{dx} = \frac{2x}{(x^2+1)^2} K(x,\kappa), \text{ where}$$
(11)

$$\mathcal{K}(x,\kappa) = \begin{cases} \frac{(1+\kappa^2)+x^2(1-\kappa^2)}{2\sqrt{1+x^2(1-\kappa^2)}} & 0 \le x \le 1/\sqrt{\kappa^2 - 1} \\ 0 & \text{everywhere else} \end{cases}$$
(12)