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Prime candidates for BSM physics

Many extensions of the Standard Model predict heavy, narrow particles
which couple via a vector current ... the W ′ and Z ′

Sequential Standard Model

broken SU(2)L × SU(2)R
GUT models

Kaluza-Klein excitations from extra dimensions

non-commuting extended technicolor

and many more ...

The ”golden channel” is the obvious place to look...

There are no Z ′ → l+l− with SM-like coupling below 2.9 TeV
(ATLAS/CMS,

√
s = 8 TeV)

But what if the new physics is afraid of leptons?

Leptophobic = more challenging = more fun
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Leptophobic bosons

To invent a model that doesn’t couple
to leptons can be complicated ...

Topcolor-assisted technicolor Z ′

or more straightforward ...

Right-handed W ′

Regardless, leptophobic means jets, and
the dreaded QCD background.

We must flavor tag the jets!

Z ′ → tt̄ can look for bW+
leptonic

recoiling against b̄W−
hadronic ... must

tag 2× b jets

No top-color Z ′ below 1.8 TeV

W ′ → tb ... must tag 2× b jets

No W ′
R below 1.9 TeV

Why are these leptophobic limits ∼40%
lower than the dilepton limit (∼3 TeV)?

JHEP1508(15)148[1505.07818] Fig. 11a
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Rise of the light jets

Probability to tag light flavors rises dramatically for boosted jets!
Light jet = no b or c hadrons; experiments can’t differentiate
b-initiated jets and g → bb̄ jets.

No complementary tags to cross-check performance as pT → O(TeV)
Huge (40%) systematic uncertainties in tagging efficiency can
dominate experimental results/exclusions.

[CMS PAS BTV-09-001] Fig. 12
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Call to action

We need a better, boosted b tag!
It must ...

1 Rejects light jets (
εb

εlight
? O(102))

2 Robust performance for jet pT > 300 GeV

Permits a cross-check with existing b tags, driving down the
uncertainty for both tags (one hand washes the other)

We can validate the new tag on a challenging signal,
like a leptophobic Z ′ → bb̄ above 2 TeV.
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Boosted b tag complications

b tags at ATLAS and CMS use a
jet’s tracks to find a SV.

Good for pT > 300 GeV; doesn’t
tag many charm/light jets.

Fake rate = εlight. Dramatic
increase as jet pT → O(TeV).

Fundamental limitations.

Collimated tracks
... dense environment.
Higher pT tracks bend less
... harder to constrain.

High-pT gluons split more often
(g → bb̄) ... real b jets initiated by
light partons.

primary vertex

xy
decay length L

secondary vertex

jet axis

track
impact
parameter
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A muon-based boosted b tag

A boosted b tag was proposed
by Duffty and Sullivan in
PRD90(2014)015031

Muon (pT ≥ 20 GeV) within
a cone of ∆R = 0.1 around
jet’s centroid.

Doesn’t depend on the muon’s
pT (after initial cut), which is
harder to measure as pT → TeV.

Heavy jet efficiencies plateau at
1 TeV, but εlight keeps rising.

And a jet’s centroid is coarse
(QCD radiation, UE, pileup ...).

We can do better by studying
boosted b tagging in the
context of jet substructure.

PRD90(14)015031[1307.1820] Fig. 2
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The subjet of semi-muonic B meson decay

CM: The muon is emitted with
speed βµ,cm at angle θcm.

Lab: Muon is detected at angle θlab
w.r.t. the centroid of the decay
subjet (boosted by γB).

psubjet = pµ + pνµ + pcore (1)

Defining κ ≡ βB/βµ,cm,

x ≡ γB tan(θlab) =
sin(θcm)

κ+ cos(θcm)
(2)

CM

Lab

x ≈ tan(θcm/2) (when κ ≈ 1)

dN

dx
=

2x

(x2 + 1)2
K (x , κ) (when κ ≥ 1) (3)
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Theoretical lab frame muon distributions

We are interested in a specific boosted subjets ...
boosted b jets (pT ≥ 300 GeV =⇒ γB ? 60).
b hadron decays (γµ,cm ≤ mB

2 mµ
> 25)

What does the lab dN/dx look like for these subjets?
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K (x , κ) restricts muons to boost cone boundary (x ≤ 1/
√
κ2 − 1).

Once γµ,cm ? 3, lab muons approach a the universal boosted shape.
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x marks the heavy-flavor tag

Using the universal boosted shape, the lab frame cone 0 ≤ x ≤ xρ
captures at least a fraction ρ of muons from b hadron decay, where

xρ =

√
ρ

1− ρ. (4)
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K (x , κ) corrections shift
muons to smaller x

xρ captures at least a
fraction ρ.
x90% = 3.

xmax: a cut used to
accept/reject muons
consistent with boosted
decay inside a jet

xmax = x90% = 3
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The µx boosted b tag

Measuring x requires reconstructing the muonic subjet

psubjet = pµ + pνµ + pcore (1.1)

x ≤ 3 only indicates the muon is consistent with a boosted decay.

It’s heavy-flavor origin can be confirmed via a complementary
measurement ... it should be carrying a large fraction of its jet’s
momentum.

x ≡ γB tan(θlab) ≤ 3 fsubjet ≡
pT ,subjet
pT ,jet

≥ 0.5

But, half the muons in b jets come from c hadrons! Is γB a valid
observable?

No ... we can only observe γsubjet.
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Reconstructing the subjet

Anti-kT jets are clustered with R = 0.4. Allowing muons to participate
lets hard muons seed jet formation.

psubjet = pµ + pνµ + pcore

Taggable muons must pass a quality cut (pT ≥ 10 GeV).

The core (the hadronic remnants of the semi-leptonic decay).

Re-cluster jet using R = 0.04 to localize core (3× 3 grid)
γsubjet needs mass of core — very poorly measured. Core mass is
constrained to best guess (e.g. mD ≈ 2 GeV).

The “correct” core brings
√

p2
subjet closest to mB ≈ 5.3 GeV.

Subjet’s neutrino:

System is under-determined. Simplest estimate: add muon a second
time to simulate neutrino (pνµ = pµ).
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Understanding what x is doing

Given pνµ = pµ, we can imagine reconstructing an arbitrary subjet:

psubjet = 2pµ + pcore

What x will we measure? Let’s express it in terms of direct observables.

γcore λ =
2Eµ

Ecore
ξ (the angle between muon and core)

If β → 1 for both the muon and the core,

x(ξ) ≈ γcore
1 + λ√

1 + 2λ γ2
core(1− cos(ξ))︸ ︷︷ ︸

γsubjet

sin(ξ)

cos(ξ) + λ︸ ︷︷ ︸
tan(θlab)

(5)

Angle where ξ dominates msubjet

ξm =
√

m2
core

2Ecore Eµ

ξ < ξm ξ ? ξm

x(ξ) ≈ γcore · ξ x ≈ 1/
√
λ
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µx is a dynamic angular cut

A poorly reconstructed msubjet is inevitable; a large msubjet is inconsistent
with heavy-hadron decay. So we implement a ceiling

msubjet = min(
√
p2
subjet, 12 GeV) (6)

0

1

2

3

4

0 1 2 3 4 5 6

x

ξ (degrees)

x(ξ) = 1/
√
λ

x(ξ) = γcore · ξ
xmax

x(ξ)

Subjet with a hard muon (γcore = 250, λ = 1/7)

Solve for ξmax, the largest ξ
which keeps x ≤ 3.

Hard muons (λ ≥ 1/9)

ξhard
max ≈

18

γcore
(7)

Soft muons (λ < 1/9)

ξsoft
max ≈

3

γcore

(
1√

1− 9λ

)
(8)
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Tagging Efficiency (Jet pT)
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Tagging Efficiency (ηjet)
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The proof is in the pudding
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A leptophobic Z ′

One of the simplest BSM models is an additional U(1)′ symmetry,
mediated by a neutral heavy boson (Z ′).

Dobrescu and Yu [1306.2629, 1506.04435] outlined a simple,
renormalizable, leptophobic Z ′B

Only SM quarks are charged (suggesting baryon number B association).
Coupling to quarks is flavor independent,

L =
gB
6
Z ′
Bµq̄γ

µq + . . . (9)

Narrow width:

ΓZ ′/MZ ′ ≈ 1

6
αB

(
1 +

αS

π

)
≈ 1–5% (10)

Model needs vector-like fermions (anomalons); assume they’re
“kinematically inaccessible”.
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Simulating the leptophobic Z ′ → bb̄

MadGraph5 (w/ CT14llo) → Pythia 8 → Delphes 3 (w/ FastJet 3)

Generate MLM matched Z ′B samples for a variety of MZ ′B
,

pp → Z ′B → bb̄/cc̄(+j).

QCD dominates background: pp → bb̄/cc̄/j j̄(+j), jqh → jqh(+j)

Look for signal excess in dσ/dMjj of width [0.85, 1.25]×MZ ′

in 2-tag and 1-tag inclusive classes.

We developed a custom Delphes module (HighPtBTagger) to
implement µx tagging, available on GitHub:

https://github.com/keith-pedersen/delphes/tree/

HighPtBTagger_devel
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2-tag discovery (MZ ′ = 2.5 TeV, gB = 1.9)
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1-tag discovery (MZ ′ = 2.5 TeV, gB = 1.3)
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Uncharted Waters

PRD88(13)035021[1306.2629] Fig. 1
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Conclusions

µx tags heavy jets at
the TeV scale.

b jet: ∼14%
light-light: ∼0.14%

Flat pT/ηjet response &
minimal pileup sensitivity.

µx tagging offers a
significant improvement
for leptophobic Z ′

searches.

THANK YOU!
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prelT muon tagging

20% of b jets have
Nmuon ≥ 1

Electrons in jets are hard to
identify; luckily someone
ordered the muon chamber!

Previous studies have
investigated prel

T : muon
momentum transverse to the
centroid of its jet.

[ATLAS-PHYS-PUB-2009-021] Fig. 4
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ATLAS

b hadrons → large mass, hard muons → higher prelT .

εb = O(10%), light jet fake rate = O(0.3%).

prelT stops working when jet pT exceeds 140 GeV.

Is this a problem of definition?
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Flavor tagging

heavy jets (b or c initiated)
distinguish?⇐⇒ light jets (d , u, s, or g initiated).

Heavy quark (m ? ΛQCD) decay functions peak near z = 1
(versus z = 0 for light partons).

Heavy quarks spawn heavy hadrons carrying a large fraction of ~pjet.

b/c hadrons decay at a secondary vertex (SV)...

Far enough from the primary vertex to be resolved
Close enough to rule out other particles (e.g. K 0

S )

b/c hadrons have a modest rate of semi-leptonic decay (l ∈ {e, µ}):

B(b → lνlX ) ≈ 11%
B(c → lνlX ) ≈ 10% (thus 20% of b jets have Nmuon ≥ 1)

b hadrons → c hadrons, so generally ...
heavy-flavor tags → b tags
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The direction of the core is extremely important!

Tracks provide the best angular information, but ...
Accurately tracking boosted jet constituents in a fast detector
simulator is not possible; we only track “standalone” muons.
Jets are clustered from Cal towers and muons.

Trimming: Before reclustering, discard Cal towers with low jet pT
fraction (we choose f min

tower = 0.05). This reduces the core’s sensitivity
to pileup, UE, soft QCD , etc.

ECal pointing: Use the segmentation of the ECal to orient the
combined (ECal+HCal) tower. This creates a minimal angular
resolution independent of track reconstruction efficiencies.

We use the dimensions of ATLAS ECal L2:
(∆ rφ×∆η = 0.025× 0.025)
Also ran coarser (0.05× 0.05); no degradation of heavy jet efficiency,
the light jet fake rate is 20% larger at jet pT = 600 GeV,
but no enhancement in fake rate at pT = 2 TeV.

Keith Pedersen (Illinois Tech) Flavor tagging TeV jets CTEQ, Nov 7 2015 22 / 22



The direction of the core is extremely important!

Tracks provide the best angular information, but ...
Accurately tracking boosted jet constituents in a fast detector
simulator is not possible; we only track “standalone” muons.
Jets are clustered from Cal towers and muons.

Trimming: Before reclustering, discard Cal towers with low jet pT
fraction (we choose f min

tower = 0.05). This reduces the core’s sensitivity
to pileup, UE, soft QCD , etc.

ECal pointing: Use the segmentation of the ECal to orient the
combined (ECal+HCal) tower. This creates a minimal angular
resolution independent of track reconstruction efficiencies.

We use the dimensions of ATLAS ECal L2:
(∆ rφ×∆η = 0.025× 0.025)
Also ran coarser (0.05× 0.05); no degradation of heavy jet efficiency,
the light jet fake rate is 20% larger at jet pT = 600 GeV,
but no enhancement in fake rate at pT = 2 TeV.

Keith Pedersen (Illinois Tech) Flavor tagging TeV jets CTEQ, Nov 7 2015 22 / 22



Moving Forward

A heavy Higgs (from quark fusion)
produces a final state rich in bottom
quarks (2× bottom, 2× top):

pp → t̄ b̄H+ → t̄ b̄tb

pp → bb̄H/A→ bb̄tt̄ (or bb̄τ+τ−)

The discovery potential of these
channels (with emphasis the
”wedge” region”) was recently
investigated by Hajer et al.

Based on personal communication,
we believe their b tagging
efficiencies and fake rates were
over-optimistic.

How well can µx tagging do?

[1504.07617] Fig. 10a

H discovery potential at 100 TeV for

tt̄ (salmon) and τ+τ− (blue) channels
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K (x , κ)

dN

dx
=

2x

(x2 + 1)2
K (x , κ), where (11)

K (x , κ) =


(1+κ2)+x2(1−κ2)

2
√

1+x2(1−κ2)
0 ≤ x ≤ 1/

√
κ2 − 1

0 everywhere else
(12)
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